文章:深度学习技术驱动青少年心理健康服务(Utilizing Deep Learning Technology to Propel Adolescent Mental Health Services)

本文探讨了如何利用深度学习技术解决青少年心理健康服务中的问题,提出了一种基于因果关系的认知事理图谱和策略驱动的心理咨询对话模型,实验证明其在筛查和初步干预方面的有效性。研究强调了生成式人工智能在降低病耻感、提高服务可达性和效率方面的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

摘要

关键词

引言

一 问题现状和相关研究基础

1 青少年心理服务现状

2 相关研究与基础

2.1 维护儿童心理健康提上重要日程

2.2 人工智能技术与心理服务的结合

二 研究价值及解决思路

1 可行性分析

1.1 落地场景分析

1.2 技术架构设计

2 关键技术应用

2.1 情感识别

2.2 认知事理图谱构建

2.3 自动对话的生成

三 实现及部署

1 功能实现

1.1 数据处理

1.2 模型训练

1.2.1 指令微调

1.2.2 强化学习

2 部署及应用

2.1 数据安全

2.2 性能优化

四 应用效果及未来展望

1 应用效果

2 未来展望

五 问题 


摘要

目的:为解决当前青少年心理健康服务供需失衡和质量良莠不齐等问题,研究应用深度学习技术,实现青少年心理问题早期的智能咨询、筛查、评估及初步干预。

方法:通过对心理学理论及案例进行解析,构建基于因果关系的认知事理图谱和策略驱动的心理咨询对话大模型,实现自动生成回复、评估和简单干预等。

结果:经过对随机抽取的100例数据进行测试,表明该模型能够更好地理解和处理心理咨询问题,完成部分筛查、咨询和科普工作。

结论:本研究验证了深度学习技术在青少年心理健康领域的应用价值,特别是构建的大模型在当前青少年心理服务支持资源不足的情况下,提供了一种可推广、可复制的线上心理服务新模式。


关键词

心理语言模型psychological language model 生成式人工智能generative artificial intelligence 青少年心理健康服务adolescent mental health services


引言

2023 年世界精神卫生日的宣传主题为“促进儿童心理健康,共同守护美好未来”。青少年的精神健康问题主要包括焦虑、抑郁、注意力缺陷多动障碍等,其中抑郁问题尤其严重。受制于心理健康服务资源的匮乏专业知识的不足及配合程度等问题,传统服务模式下容易出现心理问题被忽视、漏诊及误诊等情况[1]。大语言模型作为人工智能领域创新性的突破,有着较高的自然语言理解和对话能力,善于处理复杂语言结构、语义及上下文信息,这些优势恰好能够用于部署心理健康的自动化问答、评估和干预。因此,上海市长宁区精神卫生中心针对传统青少年心理健康服务的痛点,提出研发一个针对青少年心理健康的智能对话模型( 以下简称“该项目”),并将其应用于早期问题识别、评估及引导的智能服务模式。


一 问题现状和相关研究基础

1 青少年心理服务现状

抑郁作为情绪的一部分,是心理健康问题的一个关键指标。在我国,大众对于抑郁这一心理健康问题还知之甚少,同时受制于专业的儿童精神科临床资源严重匮乏,总体心理服务资源存在巨大的不均衡。根据2020 年心理健康蓝皮书《中国国民心理健康发展报告(2019—2020)》显示,学生群体心理健康问题随着年龄增加日益突出,并呈低龄化趋势。

2 相关研究与基础

2.1 维护儿童心理健康提上重要日程

少年儿童是国家的未来、民族的希望,《全面加强和改进新时代学生心理健康工作专项行动计划(2023—2025 年)》中提出,明确学生心理健康工作的促进体系,坚持监测预警、健康教育、咨询服务、干预处置“四位一体”的工作体系,全方位保障学生心理健康。

2.2 人工智能技术与心理服务的结合

有研究表明基于计算机辅助的认知行为疗法(computer-assisted cognitive-behavioral therapy,
CCBT)可能是治疗青少年抑郁症的一种可行性方案,表明了数字疗法的可用性和可及性[2]。国外的一些大学、研究机构和心理健康组织已经开始利用自然语言处理技术来开发心理聊天机器人,如Woebot、Wysa 和Replika 等。最新的一项研究表明,通过互联网提供治疗师指导的认知行为疗法(Internet-based cognitive behavioral therapy,ICBT),可以获得与面对面认知行为疗法(cognitive-behavioral therapy,CBT)相似的临床效果[3]。同时,应该看到技术也存在一些局限性,如难以产生共情、对于复杂的语言表达难以理解其含义、不能处理复杂的问题及保持对话的连贯性等,但这些应用的出现代表了心理健康领域的一个创新趋势,就是人工智能技术有望改善心理健康服务的可及性和效率,也为后续开展相关研究指明了方向和重点。


二 研究价值及解决思路

1 可行性分析

1.1 落地场景分析

随着上海市长宁区精神卫生中心互联网医院上线,以及网上问诊等新型就医模式逐渐成熟,越来越多的人尝试通过在线方式来获取心理健康服务资源[4]。该项目主要实现的场景,首先由生成式人工智能提供知识科普、情绪支持及相关案例内容分享,然后根据来访者表述和自测量表指标进行实时评估,对于病情较轻、较标准的诉求,可引导至互联网医院平台实现免费咨询或预约线下就诊,对于病情较为紧急和严重的诉求,线下医师可进一步通过互联网医院平台发起视频干预。

1.2 技术架构设计

考虑到心理专业要求,该项目主要采纳了公开的心理咨询案例报告教材书籍等作为理论依据基础语料,通过自然语言理解与自动对话生成技术,搭建一个策略驱动的心理咨询对话大语言模型(large language model,LLM),模拟心理咨询师与来访者进行自动对话。同时,为了更好地识别问题和提供情绪支持,需要引入知识图谱情绪识别的算法,对模型的训练进行帮助。此外,量化的评价指标也是评估的重要组成部分,因此架构中还将引入专业的量表库作为评估工具。最后,为了实现服务闭环,系统与互联网医院平台打通,帮助有需要的来访者能够根据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瑞雪兆我心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值