FunASR 语音识别系统概述

本文介绍了FunASR这一语音识别工具包,涵盖了语音识别、VAD、PR、LM等功能,阐述了技术原理,包括声学模型、语言模型和预处理等关键步骤,并提及了实战应用,如Python+HTML的实时语音识别示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FunASR(A Fundamental End-to-End Speech Recognition Toolkit)是一个基础的语音识别工具包,提供多种功能,包括语音识别(ASR)语音端点检测(VAD)标点恢复(PR)语言模型(LM)说话人分离等。项目源地址

 1 语音识别(ASR)

参考语音交互:聊聊语音识别-ASR(万字长文)

语音识别技术(Automatic Speech Recognition, ASR)是一种将人的语音(声学信号)转换为文本信息的技术(微信的语音转文字就是语音识别的典型应用,把我们说的音频信息转换成文字内容)。

1.1 语料库

语料库(Corpus)就是包含拼音与汉字的对应(中文)和音标与单词的对应(英文)的词典(Dictionary),其目的是根据声学模型识别出来的音素&#x

### FunASR 本地部署 实时语音识别 安装配置教程 #### 准备工作 确保计算机已安装 Docker 和 Python 环境。对于 MacOS 用户,可以通过以下命令来安装 Docker[^3]: ```bash brew install --cask --appdir=/Applications docker ``` #### 创建并激活虚拟环境 建议创建一个新的Python虚拟环境来进行项目开发,这有助于管理不同项目的依赖关系。可以使用如下命令完成此操作: ```bash python -m venv myenv source myenv/bin/activate # Linux 或 macOS 下启动虚拟环境 myenv\Scripts\activate.bat # Windows下启动虚拟环境 ``` #### 安装必要的软件包 在准备好的环境中输入下列指令以安装所需的库文件,包括 `websockets`、`funasr`、`modelscope` 及其他支持组件,从而为后续步骤做好铺垫[^1]: ```bash pip install websockets funasr modelscope huggingface_hub -U ``` #### 获取预训练模型 FunASR 提供了一系列高质量的预训练模型用于各种应用场景下的语音处理任务。核心采用 Paraformer 架构作为主要引擎,这是一种非自回归型端到端 ASR (Automatic Speech Recognition) 解决方案,在超过六万小时的大规模普通话标注数据集上进行了充分的学习优化;除此之外,还特别增强了时间戳预测以及关键词增强特性,使得其表现更为出色。另外两个辅助性的组成部分分别是 FSMN-VAD(前馈序列记忆网络驱动的声音活动探测器)和 CT-Transformer(具有可控延迟特性的转换器),它们共同作用于提升整体系统的稳定性和准确性[^2]。 #### 配置运行参数 根据实际需求调整相关设置项,比如采样率、声道数等硬件属性匹配选项,具体可参照官方文档说明进行适当修改。 #### 启动服务 最后一步就是通过调用特定接口开启监听模式等待接收来自客户端发送过来的数据流,并即时返回解析后的文本结果给对方。通常情况下会利用 Flask 或 FastAPI 这样的轻量级 Web 框架搭建 RESTful API 接口实现上述目标。 ```python from fastapi import FastAPI, WebSocket import uvicorn from funasr.utils.api_utils import get_realtime_asr_result app = FastAPI() @app.websocket("/ws/asr") async def websocket_endpoint(websocket: WebSocket): await websocket.accept() while True: data = await websocket.receive_bytes() result = get_realtime_asr_result(data) await websocket.send_text(result) if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000) ``` 以上即是在本地环境下成功部署 FunASR 平台并启用其实时语音转文字功能所需经历的主要流程概述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瑞雪兆我心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值