三国志

题目:《三国志》是一款很经典的经营策略类游戏。我们的小白同学是这款游戏的忠实玩家。现在他把游戏简化一下,地图上只有他一方势力,现在他只有一个城池,而他周边有一些无人占的空城,但是这些空城中有很多不同数量的同种财宝。我们的小白同学虎视眈眈的看着这些城池中的财宝。
按照游戏的规则,他只要指派一名武将攻占这座城池,里面的财宝就归他所有了。不过一量攻占这座城池,我们的武将就要留守,不能撤回。因为我们的小白手下有无数的武将,所以他不在乎这些。
从小白的城池派出的武将,每走一公理的距离就要消耗一石的粮食,而他手上的粮食是有限的。现在小白统计出了地图上城池间的道路,这些道路都是双向的,他想请你帮忙计算出他能得到 的最多的财宝数量。我们用城池的编号代表城池,规定小白所在的城池为0号城池,其他的城池从1号开始计数。
思路:最短路径问题,本题采用的是Dijkstra算法求出最短路径,再将路径视为容量转换为0-1背包问题。

#include<stdio.h>  
#include<string.h>  
#define INF 9999  
int cost[105][105], visit[105], rich[105];
int dist[105], money[100005];
int max(int a, int b)
{
    return a>b ? a : b;
}
int main()
{
    int T, s, n, m, a, b, c, min, i, j, k;
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d%d%d", &s, &n, &m);
        for (i = 0; i <= n; i++)
        {
            for (j = 0; j <= n; j++)
                cost[i][j] = INF;
        }
        for (i = 0; i<m; i++)
        {
            scanf("%d%d%d", &a, &b, &c);
            if (cost[a][b]>c)        
                cost[a][b] = cost[b][a] = c;   
        }
        for (i = 1; i <= n; i++)
            scanf("%d", &rich[i]);   


        memset(visit, 0, sizeof(visit));
        for (i = 0; i <= n; i++)
            dist[i] = cost[0][i];
        dist[0] = 0;
        visit[0] = 1;
        for (i = 1; i <= n; i++)
        {
            min = INF;
            k = 0;
            for (j = 0; j <= n; j++)
            {
                if (!visit[j] && min>dist[j])
                {
                    min = dist[j];
                    k = j;
                }
            }
            visit[k] = 1;
            for (j = 0; j <= n; j++)
            {
                if (!visit[j] && dist[j]>dist[k] + cost[k][j])
                    dist[j] = dist[k] + cost[k][j];
            }
        }


        memset(money, 0, sizeof(money));
        for (i = 1; i <= n; i++)
        {
            for (j = s; j >= dist[i]; j--)
            {
                money[j] = max(money[j], money[j - dist[i]] + rich[i]);
            }
        }
        printf("%d\n", money[s]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值