深度学习
文章平均质量分 79
cookie_234
这个作者很懒,什么都没留下…
展开
-
神经网络压缩(2): Dynamic Network Surgery for Efficient DNNs
转自:http://blog.csdn.net/zhangjunhit/article/details/53218211NIPS 2016 http://arxiv.org/abs/1608.04493文章是以Song Han,2015年的一篇文章文参考文献的;Song Han在2016年也发表了一篇关于模型压缩的文章并且获得了ICLR 2016 best paper(见上一篇博客)转载 2017-04-28 13:55:50 · 3693 阅读 · 1 评论 -
pycaffe实例
分享一个很不错的讲解pycaffe的链接 http://christopher5106.github.io/deep/learning/2015/09/04/Deep-learning-tutorial-on-Caffe-Technology.html原创 2017-08-17 10:58:05 · 769 阅读 · 0 评论 -
神经网络压缩(8)Incremental Network Quantization: Towards Lossless CNNs with Low-precision Weights
Incremental Network Quantization: Towards Lossless CNNs with Low-precision WeightsIntro英特尔中国研究院:INQ神经网络无损低比特量化技术 给定任意结构的全精度浮点神经网络模型,能将其转换成无损的低比特二进制模型原创 2017-07-19 15:05:58 · 8266 阅读 · 1 评论 -
神经网络压缩(5):BinaryNet
转载自:http://blog.csdn.net/jackytintin/article/details/534452801. BinaryNet转载 2017-06-27 17:57:59 · 1619 阅读 · 0 评论 -
神经网络压缩:Mimic(二)Distilling the Knowledge in a Neural Network
转载请注明出处:西土城的搬砖日常转载 2017-06-09 14:17:56 · 7789 阅读 · 1 评论 -
神经网络压缩(7)Soft weight-sharing for neural network compression
Soft weight-sharing for neural network compressionAbstractachieves both quantization and pruning in one simple (re-)training procedure原创 2017-06-29 16:36:10 · 4423 阅读 · 5 评论 -
神经网络压缩(6):Exploring the Regularity of Sparse Structure in Convolutional Neural Networks
Exploring the Regularity of Sparse Structure in Convolutional Neural Networks方法介绍目的: 探索稀疏性和预测精度之间的关系 能不能在稀疏性的规则中找到一个平衡点,这个点是如何提升硬件实现效率的为了探索上面的问题,文章设置了几种不同的剪枝粒度等级,在前人的基础上进行对比实验,探索剪枝粒度和预测精度之间的关系原创 2017-06-29 16:32:49 · 2976 阅读 · 0 评论 -
神经网络压缩(4) Learning Structured Sparsity in Deep Neural Networks
转载自:http://blog.csdn.net/wangqingbaidu/article/detailsLearning Structured Sparsity in Deep Neural Networks转载 2017-06-13 20:51:23 · 3079 阅读 · 0 评论 -
神经网络压缩(1):Deep Compression
本次介绍的方法为“深度压缩”,文章来自2016ICLR最佳论文 《Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization And Huffman Coding转载 2017-04-28 13:47:01 · 3597 阅读 · 0 评论 -
神经网络压缩(3):Learning both Weights and Connections for Efficient Neural Network
Learning both Weights and Connections for Efficient Neural NetworksAbstract目的:减少存储量和计算量,使网络更适合在移动设备上运行方法:简单地说是只学习重要的连接,修剪冗余的连接减少模型参数原创 2017-06-07 22:05:01 · 5365 阅读 · 0 评论 -
【网络优化】MobileNets
转自:http://blog.csdn.net/cv_family_z/article/details/70847482?locationNum=1&fps=1MobileNets用于手机或嵌入式视觉应用,提出使用depthwise separable convolutions 构造轻量化的深度神经网络,并使用两个全局超参数Width Multiplier和Resolution Multiplier减少参数数量。转载 2017-06-28 16:38:31 · 3393 阅读 · 1 评论 -
【网络优化】超轻量级网络SqueezeNet算法详解
转自: http://blog.csdn.net/shenxiaolu1984/article/details/51444525 Iandola, Forrest N., et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size.” arXiv preprint arXiv:转载 2017-05-19 15:52:51 · 1432 阅读 · 0 评论 -
神经网络压缩:Mimic(一)Do Deep Nets Really Need to be Deep
Do Deep Nets Really Need to be Deep? 论文链接: http://arxiv.org/abs/1312.6184文章主旨 Shallow feed-forward nets can learn the complex functions previously learned by deep nets原创 2017-05-02 14:50:07 · 3137 阅读 · 0 评论 -
神经网络压缩(3):Learning both Weights and Connections for Efficient Neural Network
这是2015年斯坦福和英伟达的一篇论文。转载自:http://blog.csdn.net/meanme/article/details/48713327之前介绍的两篇关于神经网络压缩的文章都是以这篇文章为基础进行的1.简介:通过修剪训练后网络中的不重要连接(connections),来减少网络所需要的参数,减少内存和cpu的消耗,使网络更加适应在移动设备上运行。2.idea思想:1)首先训练整转载 2017-05-02 19:29:06 · 958 阅读 · 0 评论 -
神经网络压缩(9) WAE-Learning a Wavelet-like Auto-Encoder to Accelerate Deep Neural Networks
转载自: http://blog.csdn.net/u011995719/article/details/78900575WAE(Wavelet-like Auto-Encoder) 是由来自中大、哈工大、桂电等多机构的多名研究人员合作提出的,发表于AAAI-2018(论文地址: https://arxiv.org/pdf/1712.07493.pdfgithub创新点: 1.转载 2018-01-06 17:13:19 · 1521 阅读 · 0 评论