题意:并查集操作的加强版,每个集群都有一个根节点,每次合并都是把一个根节点变成另外一个集群的节点的儿子,这样就保证了每个集群都只有一个根节点,查询即询问该节点到所在集群的根节点的距离,初始时每个节点都是一个集群。
在原有并查集的基础上,增加一个dist数组记录每个节点到其父节点的距离,在路径压缩的时候更新这个数值。更新的时候,还是利用递归,在执行完find(pre[a])之后pre[pre[a]]的值肯定是根节点了,dist[pre[a]]的值就是pre[a]到根节点的距离,那么dist[a] = dist[a] + dist[pre[a]]。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
using namespace std;
const int maxn = 20000 + 10;
int pre[maxn], dist[maxn], n;
int Find(int a)
{
if(pre[a] != a)
{
int tem = Find(pre[a]);
dist[a] = dist[pre[a]] + dist[a];
//cout << a << " " << pre[a] << " " << dist[a] << "\n";
return pre[a] = tem;
}
else
return a;
}
int main()
{
freopen("in.txt", "r", stdin);
int t;scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i) pre[i] = i, dist[i] = 0;
char ss[10]; int a, b;
while(~scanf("%s", ss) && ss[0] != 'O')
{
if(ss[0] == 'E')
{
scanf("%d", &a);
Find(a); printf("%d\n", dist[a]);
}
else
{
scanf("%d %d", &a, &b);
pre[a] = b;
dist[a] = (abs(a - b) % 1000);
}
}
}
return 0;
}
/*
1
4
E 3
I 3 1
E 3
I 1 2
E 3
I 2 4
E 3
O
0
2
3
5
*/