LA3211——2-sat

题意:n架飞机要着陆,每架飞机只有两个时间点可供选择(two-sat有木有啊),安排一个顺序,使得所有飞机的着陆时间当中间隔的最小值最大。

这题书上说:“最小值最大”的典型处理方法是二分查找最终答案。我的理解是:如果一个问题满足这个性质:如果一个解满足条件的约束的话,所有比这个解小的解也一定满足。那么我们就可以二分枚举最大的可能的答案。至于判断一个解是否可行,用2-sat判断。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;

const int maxn = 2000 + 10;
int n;
int times[maxn][2], mtime;
struct twosat
{
    int n;
    vector<int> g[maxn * 2];
    bool mark[maxn * 2];
    int s[maxn * 2], c;
    
    bool dfs(int x)
    {
        if(mark[x ^ 1]) return false;
        if(mark[x]) return true;
        mark[x] = true;
        s[c++] = x;
        for(int i = 0; i < g[x].size(); ++i)
            if(!dfs(g[x][i])) return false;
        return true;
    }
    
    void init(int n)
    {
        this->n = n;
        for(int i = 0; i < n * 2; ++i) g[i].clear();
        memset(mark, 0, sizeof(mark));
    }
    
    void add_clause(int x, int xval, int y, int yval)
    {
        x = x * 2 + xval;
        y = y * 2 + yval;
        g[x].push_back(y);
    }
    
    bool solve()
    {
        for(int i = 0; i < n * 2; i += 2)
        {
            if(!mark[i] && !mark[i + 1])
            {
                c = 0;
                if(!dfs(i))
                {
                    while(c > 0) mark[s[--c]] = false;
                    if(!dfs(i + 1)) return false;
                }
            }
        }
        return true;
    }
}t;

void prework()
{
    mtime = 0;
    for(int i = 0; i < n; ++i)
    {
        scanf("%d %d", ×[i][0], ×[i][1]);
        mtime = max(mtime, max(times[i][0], times[i][1]));
    }
}

void solve()
{
    int l = 0, r = mtime;
    while(l < r)
    {
        t.init(n);
        int mid = ((l + r) >> 1) + 1;
        for(int i = 0; i < n; ++i)
        {
            for(int j = i + 1; j < n; ++j)
            {
                if(abs(times[i][0] - times[j][0]) < mid)
                {
                    t.add_clause(i, 0, j, 1);
                    t.add_clause(j, 0, i, 1);
                }
                if(abs(times[i][0] - times[j][1]) < mid)
                {
                    t.add_clause(i, 0, j, 0);
                    t.add_clause(j, 1, i, 1);
                }
                if(abs(times[i][1] - times[j][0]) < mid)
                {
                    t.add_clause(i, 1, j, 1);
                    t.add_clause(j, 0, i, 0);
                }
                if(abs(times[i][1] - times[j][1]) < mid)
                {
                    t.add_clause(i, 1, j, 0);
                    t.add_clause(j, 1, i, 0);
                }
            }
        }
        if(t.solve()) l = mid;
        else r = mid - 1;
    }
    printf("%d\n", l);
}

int main()
{
    freopen("in.txt", "r", stdin);
    while(~scanf("%d", &n))
    {
        prework();
        solve();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值