题意:n架飞机要着陆,每架飞机只有两个时间点可供选择(two-sat有木有啊),安排一个顺序,使得所有飞机的着陆时间当中间隔的最小值最大。
这题书上说:“最小值最大”的典型处理方法是二分查找最终答案。我的理解是:如果一个问题满足这个性质:如果一个解满足条件的约束的话,所有比这个解小的解也一定满足。那么我们就可以二分枚举最大的可能的答案。至于判断一个解是否可行,用2-sat判断。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
const int maxn = 2000 + 10;
int n;
int times[maxn][2], mtime;
struct twosat
{
int n;
vector<int> g[maxn * 2];
bool mark[maxn * 2];
int s[maxn * 2], c;
bool dfs(int x)
{
if(mark[x ^ 1]) return false;
if(mark[x]) return true;
mark[x] = true;
s[c++] = x;
for(int i = 0; i < g[x].size(); ++i)
if(!dfs(g[x][i])) return false;
return true;
}
void init(int n)
{
this->n = n;
for(int i = 0; i < n * 2; ++i) g[i].clear();
memset(mark, 0, sizeof(mark));
}
void add_clause(int x, int xval, int y, int yval)
{
x = x * 2 + xval;
y = y * 2 + yval;
g[x].push_back(y);
}
bool solve()
{
for(int i = 0; i < n * 2; i += 2)
{
if(!mark[i] && !mark[i + 1])
{
c = 0;
if(!dfs(i))
{
while(c > 0) mark[s[--c]] = false;
if(!dfs(i + 1)) return false;
}
}
}
return true;
}
}t;
void prework()
{
mtime = 0;
for(int i = 0; i < n; ++i)
{
scanf("%d %d", ×[i][0], ×[i][1]);
mtime = max(mtime, max(times[i][0], times[i][1]));
}
}
void solve()
{
int l = 0, r = mtime;
while(l < r)
{
t.init(n);
int mid = ((l + r) >> 1) + 1;
for(int i = 0; i < n; ++i)
{
for(int j = i + 1; j < n; ++j)
{
if(abs(times[i][0] - times[j][0]) < mid)
{
t.add_clause(i, 0, j, 1);
t.add_clause(j, 0, i, 1);
}
if(abs(times[i][0] - times[j][1]) < mid)
{
t.add_clause(i, 0, j, 0);
t.add_clause(j, 1, i, 1);
}
if(abs(times[i][1] - times[j][0]) < mid)
{
t.add_clause(i, 1, j, 1);
t.add_clause(j, 0, i, 0);
}
if(abs(times[i][1] - times[j][1]) < mid)
{
t.add_clause(i, 1, j, 0);
t.add_clause(j, 1, i, 0);
}
}
}
if(t.solve()) l = mid;
else r = mid - 1;
}
printf("%d\n", l);
}
int main()
{
freopen("in.txt", "r", stdin);
while(~scanf("%d", &n))
{
prework();
solve();
}
return 0;
}