FeynRules的上手使用1--介绍&模型参数设置

FeynRules是一款基于Mathematica的工具,用于从拉氏量生成费曼规则和模型文件。本文详细介绍了模型参数的设置,包括模型基本信息、指标、耦合参数、标量和张量参数、粒子/场类型、规范群、限制参数以及混合声明,为理论物理学家构建超标准模型提供便利。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FeynRules介绍

FeynRules是一个基于Mathematica的工具包,能够从拉氏量出发,构建费曼规则,生成高能粒子物理仿真计算所需的模型文件,例如散射截面蒙特卡洛模拟,暗物质计算等等。能方便地应用于各种超标准模型费曼规则的构建,极大地方便理论家。其一般作为仿真计算的第一步。这里是官方主页,同时可参考手册。构建自己的拉氏量模型,需要一些必要的信息和参数。

模型名和基本信息

这是包含模型名,作者的email,参考文献等等信息。模型被load的时候这些信息将会打印出来。请添加图片描述

指标

拉氏量中的某些场会带两个指标,规范指标 α , ( N 2 − 1 ) \alpha ,(N^2-1) α,(N21)和洛伦兹指标 μ , ( 0 − 3 ) \mu ,(0-3) μ,(03)。定义模型的时候需要制定好这些指标。例如一个带指标 i 1 , i 2 , i 3 . . . i_1,i_2,i_3... i1,i2,i3...的场 φ i 1 , i 2 , i 3 . . . \varphi_{i_1, i_2,i_3...} φi1,i2,i3...被表示为 psi [ i n d e x 1 , i n d e x 2 , . . . ] \text{psi}[index1, index2, ...] psi[index1,index2,...],指标被指定为 Index [ n a m e , i ] \text{Index}[name, i] Index[name,i],name为指标名,指标名可任意,不过指标还是遵循本身作用命名为对应名字:4矢量指标-(Lorentz);4旋量空间-(Spin);左/右手wyel表示-(Spin1 / Spin2)等,已经被内部定义好。

然后要指定指标长度,例如,色指标长度为3: IndexRange[ Index[Colour] ] = Range[3];SU(2)群规范指标为3: IndexRange[ Index[SU2W] ] = Unfold[ Range[3] ];SU(3)胶子场指标:IndexRange[ Index[Gluon] ] = NoUnfold[ Range[8] ]。这里的函数Unfold和NoUnfold有特点含义,Unfold为展开规范指标,NoUnfold则不展开。(参考手册)指标输入可以以更方便的形式,例如声称场第一指标为 L o r e n t z \mathbf{Lorentz} Lorentz,第二指标为 G l u o n \mathbf{Gluon} Gluon后,FeynRules会自动构建指标名:
G[mu, a] → G[Index[Lorentz, mu], Index[Gluon, a]] \text{G[mu, a]} \to \text{G[Index[Lorentz, mu], Index[Gluon, a]]} G[mu, a]G[Index[Lorentz, mu], Index[Gluon, a]]

耦合参数

标量参数

拉氏量需要指定参数,例如耦合常数或者是质量参数等标量参数,模型参数可以被分为标量或者是多指标变量。在FeynRules中这被分为两部分列表。

这里参数是“冗余”的,例如强耦合常数 g s g_s gs,出现在拉氏量里; α s = g s 2 / 4 π \alpha_s = g_s^2/4π αs=gs2/4π,出现在实验中。指定一个即决定另一个。但是实验通常测量 α s \alpha_s αs,所以在FeynRules里 α s \alpha_s αs被称为 external \textbf{external} external g s g_s gs被称为 internal \textbf{internal} internal parameter。两者都需要指定,外部参数值为实数,内部为公式。要先指定外部,再指定内部参数。例子如下:
请添加图片描述

张量参数

拉矢量另外一些参数是张量例如酋矩阵、质量矩阵、CKM矩阵等等,它们被指定为一系列参数,并且默认指定为复数。例如CKM矩阵:
请添加图片描述
其被指定为内部参数,值由卡波比角确定。拉氏量中,指标需要为全缩并形式,即指标要重复两次,但是额外情况也被允许,例如3指标相同的求和,详情见手册。

粒子/场 的种类与参数

场指标是由自旋标记的,如 s p i n − spin- spin 0,1/2,1,3/2,2等,需要被指定。请添加图片描述
携带同样量子数但是质量不同的场被认为是“多重态”,能够更紧凑的写下拉氏量,例如典型的quark拉氏量:请添加图片描述
粒子需要被指定名字和是否有反粒子,以及质量等其它参数。对于场不是自共厄的情况,共轭场会自动创建,只需使用 “fieldnamebar” 来使用。玻色子场的反粒子场对应它的厄米共厄,费米子场则对应 ψ ˉ = ψ † γ 0 \bar{\psi}=\psi^{\dagger} \gamma^{0} ψˉ=ψγ0。场的指标需要跟相应的对称性挂钩,洛伦兹和自旋指标对应庞加莱群,能被自动FeynRules设定不需要指定;但是色指标【SU(3)对称】和味指标【味对称性(假设)】需要指定。

除了SU(N)规范理论对称性带来的指标,剩下的U(1)或离散对称性被量子数“荷”所携带。另外指定粒子质量,质量可以是 internal \textbf{internal} internal parameter,例如Highs机制下 W , Z W,Z W,Z质量由对称性破缺决定。由于我们无法同时对角化质量矩阵和Yukawa矩阵,导致会有出现mass basic和favor basic的情况【取决于对角化谁】,一般希望对角化质量矩阵,而favor basic被认为是非物理的。FeynRules中也能够使用favor basic计算。另外就是对角化U(1) × \times ×SU(2)玻色子【 A , Z , W A,Z,W A,Z,W】质量矩阵出现weak mixing angle【温伯格角】能够被指定或是符号计算。在最后相互作用顶点计算时需要被替换【 B , W 1 , W 2 , W 3 → A , Z , W + , W − B,W^1,W^2,W^3 \to A,Z,W^+,W^- B,W1,W2,W3A,Z,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值