海森堡模型的基态计算
1.二自旋
定义磁场中二自旋的海森堡(Heisenberg)模型:
H ^ ( h α ) = ∑ α = x , y , z [ s ^ 1 α s ^ 2 α + h α ( s ^ 1 α + s ^ 2 α ) ] \hat{H}(h^\alpha) = \sum_{\alpha = x,y,z}[\hat{s}_1^\alpha\hat{s}_2^\alpha+h^\alpha(\hat{s}_1^\alpha+\hat{s}_2^\alpha)] H^(hα)=α=x,y,z∑[s^1αs^2α+hα(s^1α+s^2α)]
H ^ \hat{H} H^表示哈密顿量
按理说 s ^ 1 α s ^ 2 α \hat{s}_1^\alpha\hat{s}_2^\alpha s^1αs^2α为4x4的矩阵, s ^ 1 α , s ^ 2 α \hat{s}_1^\alpha,\hat{s}_2^\alpha s^1α,s^2α与 h α h^\alpha hα乘积下为一个2x2的矩阵,解决方法为为: s ^ 1 α , s ^ 2 α \hat{s}_1^\alpha,\hat{s}_2^\alpha s^1α,s^2α分别直积上一个2x2的单位阵
其中, h α h^\alpha hα定义为沿自旋 α \alpha α方向的外磁场。
下面我们考虑自旋1/2,选择 s ^ z \hat{s}^z s^z本征态作为基矢
为简便起见:设 h x = h y = 0 , h z = h h^x = h^y =0,h^z = h hx=hy=0,hz=h
显而易见, H ^ \hat{H} H^不能写成多个单体算符的直积(把海森堡模型当作一个二体算符来处理)
H ^ \hat{H} H^的系数可看作是2 × 2 × 2 × 2的四阶张量或4 × 4矩阵,计算步骤为:
(a)获得各个自旋算符的矩阵;
(b)计算 s ^ 1 α s ^ 2 α \hat{s}_1^\alpha\hat{s}_2^\alpha s^