目录
前言
在当今信息爆炸的时代,知识图谱成为理解和组织海量信息的有效工具之一。而在知识图谱的实际应用中,关系型数据库的使用变得愈发重要。本文将探讨基于关系型数据库的知识图谱存储,着重于图结构数据的关系存储、物理结构、性能问题和图的查询问题。
1 图结构数据的关系存储
知识图谱的本质是图结构数据,其构建和存储方式涉及到多种图模型,其中包括属性图、RDF图模型等。引人注目的是Wikidata,一个广泛应用的知识图谱实现,其选择将MySQL作为底层存储引擎。这引发了一个有趣而实际的问题:关系型数据库如何有效地存储和管理图结构数据。
1.1 Wikidata与MySQL的结合
Wikidata作为维基媒体项目的一部分,是一个多语言知识图谱,包含着丰富的实体关系和属性信息。其背后的技术选择MySQL作为存储引擎,这使得我们可以从实际应用中学习关系型数据库在知识图谱中的实践。
1.2 关系型数据库的优势与挑战
关系型数据库在处理复杂结构化数据上具有强大的能力,提供了标准SQL查询语言,适用于复杂的数据关联操作。
知识图谱的本质是图形结构,而关系型数据库的表格结构与图形结构并不完全吻合,这导致了一些性能和模型匹配的挑战。
Wikidata的选择为我们提供了一个启示,即关系型数据库可以