关于LSTM解决梯度弥散爆炸问题解析

转自知乎@Towser 原链接



 

“LSTM 能解决梯度消失/梯度爆炸”是对 LSTM 的经典误解。这里我先给出几个粗线条的结论,详细的回答以后有时间了再扩展:

1、首先需要明确的是,RNN 中的梯度消失/梯度爆炸和普通的 MLP 或者深层 CNN 中梯度消失/梯度爆炸的含义不一样。MLP/CNN 中不同的层有不同的参数,各是各的梯度;而 RNN 中同样的权重在各个时间步共享,最终的梯度 g = 各个时间步的梯度 g_t 的和。

2、由 1 中所述的原因,RNN 中总的梯度是不会消失的。即便梯度越传越弱,那也只是远距离的梯度消失,由于近距离的梯度不会消失,所有梯度之和便不会消失。RNN 所谓梯度消失的真正含义是,梯度被近距离梯度主导,导致模型难以学到远距离的依赖关系。

3、LSTM 中梯度的传播有很多条路径这条路径上只有逐元素相乘和相加的操作,梯度流最稳定;但是其他路径(例如 )上梯度流与普通 RNN 类似,照样会发生相同的权重矩阵反复连乘。

4、LSTM 刚提出时没有遗忘门,或者说相当于 ,这时候在 直接相连的短路路径上, 可以无损地传递给 ,从而这条路径上的梯度畅通无阻,不会消失。类似于 ResNet 中的残差连接。

5、但是在其他路径上,LSTM 的梯度流和普通 RNN 没有太大区别,依然会爆炸或者消失。由于总的远距离梯度 = 各条路径的远距离梯度之和,即便其他远距离路径梯度消失了,只要保证有一条远距离路径(就是上面说的那条高速公路)梯度不消失,总的远距离梯度就不会消失(正常梯度 + 消失梯度 = 正常梯度)。因此 LSTM 通过改善一条路径上的梯度问题拯救了总体的远距离梯度

6、同样,因为总的远距离梯度 = 各条路径的远距离梯度之和,高速公路上梯度流比较稳定,但其他路径上梯度有可能爆炸,此时总的远距离梯度 = 正常梯度 + 爆炸梯度 = 爆炸梯度,因此 LSTM 仍然有可能发生梯度爆炸。不过,由于 LSTM 的其他路径非常崎岖,和普通 RNN 相比多经过了很多次激活函数(导数都小于 1),因此 LSTM 发生梯度爆炸的频率要低得多。实践中梯度爆炸一般通过梯度裁剪来解决。

7、对于现在常用的带遗忘门的 LSTM 来说,6 中的分析依然成立,而 5 分为两种情况:其一是遗忘门接近 1(例如模型初始化时会把 forget bias 设置成较大的正数,让遗忘门饱和),这时候远距离梯度不消失;其二是遗忘门接近 0,但这时模型是故意阻断梯度流的,这不是 bug 而是 feature(例如情感分析任务中有一条样本 “A,但是 B”,模型读到“但是”后选择把遗忘门设置成 0,遗忘掉内容 A,这是合理的)。当然,常常也存在 f 介于 [0, 1] 之间的情况,在这种情况下只能说 LSTM 改善(而非解决)了梯度消失的状况。

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值