特征工程-缺失值处理

缺失值处理

  1. 删除缺失值(Delete Missing Values):最简单的方法是直接删除包含缺失值的样本或特征。这种方法适用于缺失值较少的情况,但可能会导致数据量减少和信息损失。

  2. 填充缺失值(Imputation):填充缺失值是指用某种方法将缺失值替换为一个合理的估计值。常见的填充方法包括均值填充、中位数填充、众数填充和插值法等。填充缺失值可以保留更多的数据样本,但可能会引入估计误差。

  3. 预测模型填充(Model-based Imputation):利用已有的特征值和目标变量建立预测模型,然后使用该模型对缺失值进行预测填充。常见的模型包括线性回归、随机森林和神经网络等。这种方法可以更准确地估计缺失值,但需要较多的计算资源和时间。

  4. 多重插补(Multiple Imputation):多重插补是一种基于模型的缺失值处理方法,它通过多次填充缺失值并生成多个完整的数据集,然后对这些数据集进行分析和合并得到最终结果。多重插补可以更好地反映缺失值的不确定性和变异性。

这里讲讲缺失值的填充, 首先需要考虑特征的数据类型:

  1. 数值型(Numerical):数值型特征是指具有数值意义的特征,可以进行数学运算。数值型特征可以进一步分为连续型和离散型。连续型特征是指在一定范围内可以取任意值的特征,如年龄、身高等。离散型特征是指只能取有限个数值的特征,如性别、学历等。

  2. 类别型(Categorical):类别型特征是指具有固定类别的特征,不能进行数学运算。类别型特征可以进一步分为有序型和无序型。有序型特征是指具有一定顺序或等级的特征,如教育程度(小学、初中、高中、大学等)。无序型特征是指没有明确顺序的特征,如颜色、品牌等。

一般的处理方案,数值型填充固定的一个数值,如-1,类别型填充'U'或者自定义其他值。注意不要和特征值域中值重合,方便后期数据观察。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值