[特征工程]--缺失值处理

目前常用的三类处理方法:
1. 用平均值、中值、分位数、众数、随机值等替代。效果一般,因为等于人为增加了噪声。
2. 先根据欧式距离或Pearson相似度,来确定和缺失数据样本最近的K个样本,将这K个样本的相关feature加权平均来估计该样本的缺失数据。
3. 将变量映射到高维空间
a.对于离散型变量:男、女或缺失的情况,采用One-hot编码,映射成三个变量,是否男、是否女、是否缺失;
b.对于连续型变量,首先对连续变量进行变量分箱,采用一定的数据平滑方式(平均值/中值/箱边界)进行离散化,然后增加是否缺失这种维度。
比如淘宝的推荐系统,动辄高达几亿维度的变量。这样做的好处就是保留的原始数据的大部分信息,不用考虑缺失值的问题,缺点是计算量大大提升。只有在样本量非常大的时候效果还好,否则会因为数据过于稀疏,效果很差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值