最短路算法总结(图论)

我们只需考虑有向图上的算法,因为无向图是特殊的有向图。我们可以将所有无向边 u↔v,都拆分成两条有向边:u←v 和 u→v。为了方便叙述,我们做如下约定:n表示图中点数,m 表示图中边数。

一.图的存储
图一般有两种存储方式:

1.邻接矩阵。开个二维数组,g[i][j] 表示点 i和点 j之间的边权。
2.邻接表。邻接表有两种常用写法:
        (1) 二维vector:vector<vector<int>> edge,edge[i][j] 表示第 i个点的第 j条邻边。
        (2) 数组模拟邻接表:为每个点开个单链表,分别存储该点的所有邻边。(推荐)

二.最短路算法
最短路算法分为两大类:

单源最短路,常用算法有:
 (1) dijkstra,只有所有边的权值为正时才可以使用。在稠密图上的时间复杂度是 O(n2)稀疏图上的时间复杂度是 O(mlogn)
 (2) spfa,不论边权是正的还是负的,都可以做。算法平均时间复杂度是 O(km)k是常数。 强烈推荐该算法。

多源最短路,一般用floyd算法。代码很短,三重循环,时间复杂度是 O(n3)

三.代码模板

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010, M = 2000010, INF = 1000000000;

int n, m;
int g[N][N], dist[N];   // g[][]存储图的邻接矩阵, dist[]表示每个点到起点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

void dijkstra()
{
    for (int i = 1; i <= n; i++) dist[i] = INF;
    dist[1] = 0;
    for (int i = 0; i < n; i++)
    {
        int id, mind = INF;
        for (int j = 1; j <= n; j++)
            if (!st[j] && dist[j] < mind)
            {
                mind = dist[j];
                id = j;
            }
        st[id] = 1;
        for (int j = 1; j <= n; j++) dist[j] = min(dist[j], dist[id] + g[id][j]);
    }
}

int main()
{
    cin >> m >> n;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            g[i][j] = INF;
    for (int i = 0; i < m; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        g[a][b] = g[b][a] = min(g[a][b], c);
    }
    dijkstra();
    cout << dist[n] << endl;
    return 0;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值