这道题是 最大递增子序列和 问题。和 最长递增子序列 问题是差不多的。(LIS)
这道题完全不用管那两个起点终点,因为它说了从起点可以直接到任何一个棋子,从任何一个棋子也可以直接到终点,而且起点终点没有数。
然后棋子排成一列,每个棋子上都有一个正整数。路线必须向前但可以不连续(符合子序列的定义),而且跳跃路径上的数必须越来越大(严格递增),在满足以上前提下求出最大的路径和(每个棋子上的数相加)。
还是来回顾一下子序列和子串的区别,给一个大小为n
的数组,我认为,子串的数量等于区间的数量,为n(n+1)/2
;而子序列的数量等于子集的数量再减一(因为一般来说子序列是不能什么都不选的),为2^n-1
。而一般所说的子序列和子集还是有区别,集合不关注顺序,而子序列应该保证还是原数组的顺序(结合题目所说必须向前跳)。
所以LIS这类问题的复杂度不再是O(n)
(最大子串和),而是O(n^2)
。
思路和最大子串和的问题很相似,都是用一个dp数组表示以当前元素为尾的那个子问题的最优解。不同的是,最大子串和的当前状态只由上一个状态得出,而LIS的当前状态可以由之前的所有状态得出,所以这就多了一层循环。
最后,最大递增子序列和 问题和 最长递增子序列 问题基本一致,区别仅在于dp数组用a[]
还是1
。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cstring>
#include <string>
#include <queue>
using namespace std; // LIS 最长/最大 递增子序列(非子串)
const int MAXN = 1e3;
int N;
int a[MAXN];
int sum[MAXN]; // 表示一定要由a[i]为尾的最大递增子序列和!!
int ans;
void init()
{
ans = -1e9;
}
int main()
{
for (; ~scanf("%d", &N);)
{
if (N == 0) break;
init();
for (int i = 0; i < N; i++)
scanf("%d", &a[i]);
sum[0] = a[0]; // 如果求最长递增子序列的长度,这里就是1
for (int i = 1; i < N; i++)
{
int t = 0;
for (int j = 0; j < i; j++) //
if (a[j] < a[i]) // 没有等号就是要求严格递增
t = max(t, sum[j]);
sum[i] = t + a[i];
}
for (int i = 0; i < N; i++)
ans = max(ans, sum[i]);
printf("%d\n", ans);
}
return 0;
}