HDU 1087 Super Jumping! Jumping! Jumping!

传送门

这道题是 最大递增子序列和 问题。和 最长递增子序列 问题是差不多的。(LIS)

这道题完全不用管那两个起点终点,因为它说了从起点可以直接到任何一个棋子,从任何一个棋子也可以直接到终点,而且起点终点没有数。
然后棋子排成一列,每个棋子上都有一个正整数。路线必须向前但可以不连续(符合子序列的定义),而且跳跃路径上的数必须越来越大(严格递增),在满足以上前提下求出最大的路径和(每个棋子上的数相加)。

还是来回顾一下子序列和子串的区别,给一个大小为n的数组,我认为,子串的数量等于区间的数量,为n(n+1)/2;而子序列的数量等于子集的数量再减一(因为一般来说子序列是不能什么都不选的),为2^n-1。而一般所说的子序列和子集还是有区别,集合不关注顺序,而子序列应该保证还是原数组的顺序(结合题目所说必须向前跳)。
所以LIS这类问题的复杂度不再是O(n)(最大子串和),而是O(n^2)

思路和最大子串和的问题很相似,都是用一个dp数组表示以当前元素为尾的那个子问题的最优解。不同的是,最大子串和的当前状态只由上一个状态得出,而LIS的当前状态可以由之前的所有状态得出,所以这就多了一层循环。

最后,最大递增子序列和 问题和 最长递增子序列 问题基本一致,区别仅在于dp数组用a[]还是1


#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cstring>
#include <string>
#include <queue>
using namespace std;         // LIS 最长/最大 递增子序列(非子串)

const int MAXN = 1e3;
int N;
int a[MAXN];
int sum[MAXN];               // 表示一定要由a[i]为尾的最大递增子序列和!!
int ans;

void init()
{
	ans = -1e9;
}

int main()
{
	for (; ~scanf("%d", &N);)
	{
		if (N == 0) break;
		init();
		for (int i = 0; i < N; i++)
			scanf("%d", &a[i]);

		sum[0] = a[0];                               // 如果求最长递增子序列的长度,这里就是1
		for (int i = 1; i < N; i++)
		{
			int t = 0;
			for (int j = 0; j < i; j++)              // 
				if (a[j] < a[i])                     // 没有等号就是要求严格递增
					t = max(t, sum[j]);
			sum[i] = t + a[i];
		}
		for (int i = 0; i < N; i++)
			ans = max(ans, sum[i]);
		printf("%d\n", ans);
	}

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值