HDU 1176 免费馅饼

传送门

数塔dp的变形。
从“整个过程分为许多秒,每一秒都要做一个决策,当前位置可转移到最多左右1个单位”这些特征可以看出,这是个类似数塔的dp过程。每一秒只能在一个位置获取馅饼(这一点题目没说清楚),所以把每秒看成数塔的每一层,每层都是11个结点(代表每个位置),每个结点可访问下层的三个结点(不是边界的情况下)。还说“同一秒钟在同一点上可能掉下多个馅饼”,这就意味着数塔上结点的值可以大于1。那么在输入同时建立这个数塔。

数塔长这样:(数塔的层数就是数据中最大的秒数,给的那个n没什么用)
在这里插入图片描述
代码中加了一个虚拟的第0层,只是为了直接输出答案(dp[0][5]),不用再写max(max(dp[1][4],dp[1][5]),dp[1][6])了。


#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cstring>
#include <string>
#include <queue>
using namespace std;                       // 数塔dp只用1个数组就行

int dp[100000][11];                        // 每秒代表一层,每层都是11的结点
int N;
int maxT;                                  // 层数

void init()
{
	memset(dp, 0, sizeof dp);              // 必须要初始化
	maxT = -1;
}

int main()
{
	int a, b;
	for (; ~scanf("%d", &N);)
	{
		if (N == 0) break;
		init();
		for (; N--;)
		{
			scanf("%d%d", &a, &b);
			dp[b][a]++;
			maxT = max(maxT, b);
		}

		for (int i = maxT - 1; i >= 0; i--)          // 多了一个第0层,代表初始状态(这一层肯定不会有馅饼)
		{
			for (int j = 0; j <= 10; j++)
			{
				if (j == 0)                          // 加条件判断边界,就不用琢磨怎么初始化边界了
					dp[i][j] += max(dp[i + 1][j], dp[i + 1][j + 1]);
				else if (j == 10)
					dp[i][j] += max(dp[i + 1][j], dp[i + 1][j - 1]);
				else
					dp[i][j] += max(max(dp[i + 1][j], dp[i + 1][j + 1]), dp[i + 1][j - 1]);
			}
		}
		printf("%d\n", dp[0][5]);
	}

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值