python 语言中pandans 的reset_index() 函数作用

在进行实际的数据操作时,通常会用pandans 对数据进行清洗

这使得原有的数据 行 缺失,导致数据 行 的数据索引不再是连续的

此时可以使用   reset_index()重置索引

例子:

import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(20).reshape(5,4),index=[1,3,4,6,8])
print(df)
    0   1   2   3
1   0   1   2   3
3   4   5   6   7
4   8   9  10  11
6  12  13  14  15
8  16  17  18  19

采用 reset_index()重置索引:

print(df.reset_index())
   index   0   1   2   3
0      1   0   1   2   3
1      3   4   5   6   7
2      4   8   9  10  11
3      6  12  13  14  15
4      8  16  17  18  19

此时可以看出,在数据列表中 多出一行  index  这也就是原来的索引行

如果不想保存此行, 可以添加参数

drop=True,默认 False。

print(df.reset_index(drop=True))

结果是

    0   1   2   3
0   0   1   2   3
1   4   5   6   7
2   8   9  10  11
3  12  13  14  15
4  16  17  18  19

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值