OpenJudge1.6编程基础之一维数组


01:与指定数字相同的数的个数

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

输出一个整数序列中与指定数字相同的数的个数。

输入

输入包含三行:
第一行为N,表示整数序列的长度(N <= 100);
第二行为N个整数,整数之间以一个空格分开;
第三行包含一个整数,为指定的整数m。

输出

输出为N个数中与m相同的数的个数。

样例输入

3
2 3 2
2

样例输出

2

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int main(){
    int a[100],N,m,num=0;
    cin>>N;
    for(int i=0;i<N;i++){
        cin>>a[i];
    }
    cin>>m;
    for(int i=0;i<N;i++){
        if(a[i]==m)
            num++;
    }
    cout<<num;
    return 0;
}

02:陶陶摘苹果

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

陶陶家的院子里有一棵苹果树,每到秋天树上就会结出10个苹果。苹果成熟的时候,陶陶就会跑去摘苹果。陶陶有个30厘米高的板凳,当她不能直接用手摘到苹果的时候,就会踩到板凳上再试试。

现在已知10个苹果到地面的高度,以及陶陶把手伸直的时候能够达到的最大高度,请帮陶陶算一下她能够摘到的苹果的数目。假设她碰到苹果,苹果就会掉下来。

输入

包括两行数据。第一行包含10个100到200之间(包括100和200)的整数(以厘米为单位)分别表示10个苹果到地面的高度,两个相邻的整数之间用一个空格隔开。第二行只包括一个100到120之间(包含100和120)的整数(以厘米为单位),表示陶陶把手伸直的时候能够达到的最大高度。

输出

包括一行,这一行只包含一个整数,表示陶陶能够摘到的苹果的数目。

样例输入

100 200 150 140 129 134 167 198 200 111
110

样例输出

5

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int main(){
    int a[10],h,num=0;
    for(int i=0;i<10;i++)
        cin>>a[i];
    cin>>h;
    for(int i=0;i<10;i++)
        if(h+30>=a[i])
            num++;
    cout<<num;
    return 0;
}

03:计算书费

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

下面是一个图书的单价表:
计算概论 28.9 元/本
数据结构与算法 32.7 元/本
数字逻辑 45.6元/本
C++程序设计教程 78 元/本
人工智能 35 元/本
计算机体系结构 86.2 元/本
编译原理 27.8元/本
操作系统 43 元/本
计算机网络 56 元/本
JAVA程序设计 65 元/本
给定每种图书购买的数量,编程计算应付的总费用。

输入

输入一行,包含10个整数(大于等于0,小于等于100),分别表示购买的《计算概论》、《数据结构与算法》、《数字逻辑》、《C++程序设计教程》、《人工智能》、《计算机体系结构》、《编译原理》、《操作系统》、《计算机网络》、《JAVA程序设计》的数量(以本为单位)。每两个整数用一个空格分开。

输出

输出一行,包含一个浮点数f,表示应付的总费用。精确到小数点后一位。

样例输入

1 5 8 10 5 1 1 2 3 4

样例输出

2140.2

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int main(){
    int num;
    float sum=0,a[10]={28.9,32.7,45.6,78,35,86.2,27.8,43,56,65};
    for(int i=0;i<10;i++){
        cin>>num;
        sum += num*a[i];
    }
    printf("%.1f",sum);
    return 0;
}

04:数组逆序重放

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

将一个数组中的值按逆序重新存放。例如,原来的顺序为8,6,5,4,1。要求改为1,4,5,6,8。

输入

输入为两行:第一行数组中元素的个数n(1<n<100),第二行是n个整数,每两个整数之间用空格分隔。

输出

输出为一行:输出逆序后数组的整数,每两个整数之间用空格分隔。

样例输入

5
8 6 5 4 1

样例输出

1 4 5 6 8

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int main(){
    int n,a[100];
    cin>>n;
    for(int i=0;i<n;i++){
        cin>>a[i];
    }
    for(int i=n-1;i>=0;i--){
        cout<<a[i]<<" ";
    }
    return 0;
}

05:年龄与疾病

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

某医院想统计一下某项疾病的获得与否与年龄是否有关,需要对以前的诊断记录进行整理,按照0-18、19-35、36-60、61以上(含61)四个年龄段统计的患病人数占总患病人数的比例。

输入

共2行,第一行为过往病人的数目n(0 < n <= 100),第二行为每个病人患病时的年龄。

输出

按照0-18、19-35、36-60、61以上(含61)四个年龄段输出该段患病人数占总患病人数的比例,以百分比的形式输出,精确到小数点后两位。每个年龄段占一行,共四行。

样例输入

10
1 11 21 31 41 51 61 71 81 91

样例输出

20.00%
20.00%
20.00%
40.00%

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int main(){
    int n,num[4]={0},a; //num四个数据为年龄组人数统计
    cin>>n;
    for(int i=0;i<n;i++){
        cin>>a;
        if(a<=18)
            num[0]++;   //统计各年龄人数
        else if(a<=35)
            num[1]++;
        else if(a<=60)
            num[2]++;
        else
            num[3]++;
    }
    for(int i=0;i<4;i++)
        printf("%.2f%%\n",100.0*num[i]/n);  //“%%”输出%
    return 0;
}

06:校门外的树

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米。我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置;数轴上的每个整数点,即0,1,2,……,L,都种有一棵树。

由于马路上有一些区域要用来建地铁。这些区域用它们在数轴上的起始点和终止点表示。已知任一区域的起始点和终止点的坐标都是整数,区域之间可能有重合的部分。现在要把这些区域中的树(包括区域端点处的两棵树)移走。你的任务是计算将这些树都移走后,马路上还有多少棵树。

输入

第一行有两个整数L(1 <= L <= 10000)和 M(1 <= M <= 100),L代表马路的长度,M代表区域的数目,L和M之间用一个空格隔开。接下来的M行每行包含两个不同的整数,用一个空格隔开,表示一个区域的起始点和终止点的坐标。

对于20%的数据,区域之间没有重合的部分;
对于其它的数据,区域之间有重合的情况。

输出

包括一行,这一行只包含一个整数,表示马路上剩余的树的数目。

样例输入

500 3
150 300
100 200
470 471

样例输出

298

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int main(){
    int a[10001]={0},L,M,start,end,num=0;    //最多10001颗树
    cin>>L>>M;
    for(int i=0;i<M;i++){
        cin>>start>>end;
        for(int j=start;j<=end;j++)
            a[j]=1;     //标记被移走
    }
    for(int i=0;i<=L;i++)
        if(a[i]==0)
            num++;
    cout<<num;
    return 0;
}

07:有趣的跳跃

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

一个长度为n(n>0)的序列中存在“有趣的跳跃”当前仅当相邻元素的差的绝对值经过排序后正好是从1到(n-1)。例如,1 4 2 3存在“有趣的跳跃”,因为差的绝对值分别为3,2,1。当然,任何只包含单个元素的序列一定存在“有趣的跳跃”。你需要写一个程序判定给定序列是否存在“有趣的跳跃”。

输入

一行,第一个数是n(0 < n < 3000),为序列长度,接下来有n个整数,依次为序列中各元素,各元素的绝对值均不超过1,000,000,000。

输出

一行,若该序列存在“有趣的跳跃”,输出"Jolly",否则输出"Not jolly"。

样例输入

4 1 4 2 3

样例输出

Jolly

参考程序

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;

int main (){
    int tag[3000]={0},n;
    long pre_a,a;
    cin>>n>>a;
    for(int i=1;i<n;i++){
        pre_a = a;
        cin>>a;
        tag[(int)abs(a-pre_a)]=1;
    }
    if(n==1)
        cout<<"Jolly";
    else{
        for(int i=1;i<=n-1;i++)
            if(tag[i]==0){
                cout<<"Not jolly";
                return 0;
            }
        cout<<"Jolly";
    }
    return 0;
}

08:石头剪刀布

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

石头剪刀布是常见的猜拳游戏。石头胜剪刀,剪刀胜布,布胜石头。如果两个人出拳一样,则不分胜负。

一天,小A和小B正好在玩石头剪刀布。已知他们的出拳都是有周期性规律的,比如:“石头-布-石头-剪刀-石头-布-石头-剪刀……”,就是以“石头-布-石头-剪刀”为周期不断循环的。请问,小A和小B比了N轮之后,谁赢的轮数多?

输入

输入包含三行。
第一行包含三个整数:N,NA,NB,分别表示比了N轮,小A出拳的周期长度,小B出拳的周期长度。0 < N,NA,NB < 100。
第二行包含NA个整数,表示小A出拳的规律。
第三行包含NB个整数,表示小B出拳的规律。
其中,0表示“石头”,2表示“剪刀”,5表示“布”。相邻两个整数之间用单个空格隔开。

输出

输出一行,如果小A赢的轮数多,输出A;如果小B赢的轮数多,输出B;如果两人打平,输出draw。

样例输入

10 3 4
0 2 5
0 5 0 2

样例输出

A

提示

对于测试数据,猜拳过程为:
A:0 2 5 0 2 5 0 2 5 0
B:0 5 0 2 0 5 0 2 0 5
A赢了4轮,B赢了2轮,双方打平4轮,所以A赢的轮数多。

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int main(){
    int a[100],b[100],numA=0,numB=0,n,na,nb;    //a、b数组为每一轮的出拳,num为计数
    cin>>n>>na>>nb;
    for(int i=0;i<na;i++)      //输入第一轮出拳
        cin>>a[i];
    for(int i=0;i<nb;i++)
        cin>>b[i];
    for(int i=na;i<n;i++){   //循环赋值全部轮出拳
        a[i] = a[i%na];
    }
    for(int i=nb;i<n;i++){
        b[i] = b[i%nb];
    }
    for(int i=0;i<n;i++){      //模拟出拳,比较胜负计数
        if((a[i]==0&&b[i]==2) || (a[i]==2&&b[i]==5) || (a[i]==5&&b[i]==0))
            numA++;
        if((a[i]==0&&b[i]==5) || (a[i]==2&&b[i]==0) || (a[i]==5&&b[i]==2))
            numB++;
    }
    if(numA>numB)
        cout<<"A";
    else if(numA<numB)
        cout<<"B";
    else
        cout<<"draw";
    return 0;
}

09:向量点积计算

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

在线性代数、计算几何中,向量点积是一种十分重要的运算。

给定两个n维向量a=(a1,a2,…,an)和b=(b1,b2,…,bn),求点积a·b=a1b1+a2b2+…+anbn。

输入

第一行是一个整数n。1 <= n <= 1000。
第二行包含n个整数a1,a2,…,an。
第三行包含n个整数b1,b2,…,bn。
相邻整数之间用单个空格隔开。每个整数的绝对值都不超过1000。

输出

一个整数,即两个向量的点积结果。

样例输入

3
1 4 6
2 1 5

样例输出

36

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int main(){
    long sum=0;   //最大的情况超过int表示范围
    int n,a[1001],b[1001];
    cin>>n;
    for(int i=0;i<n;i++)    //数组赋值
        cin>>a[i];
    for(int i=0;i<n;i++)
        cin>>b[i];
    for(int i=0;i<n;i++)    //计算点积
        sum += a[i]*b[i];
    cout<<sum;
    return 0;
}

10:大整数加法

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

求两个不超过200位的非负整数的和。

输入

有两行,每行是一个不超过200位的非负整数,可能有多余的前导0。

输出

一行,即相加后的结果。结果里不能有多余的前导0,即如果结果是342,那么就不能输出为0342。

样例输入

22222222222222222222
33333333333333333333

样例输出

55555555555555555555

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int main(){     //大数相加的核心思想是倒叙相加
    int a[202]={0},b[202]={0},c[202]={0};
    string s1,s2;
    int len1,len2,s=0;  //s为进位标记
    cin>>s1>>s2;
    len1 = s1.length();
    len2 = s2.length();
    for(int i=0;i<len1;i++)     //将字符串倒序赋值给整数数组
        a[i] = s1[len1-i-1]-'0';
    for(int i=0;i<len2;i++)
        b[i] = s2[len2-i-1]-'0';
    len1 = len1>len2?len1:len2;     //找到最长长度
    for(int i=0;i<=len1;i++){   //c[0]--c[len1]计算
        c[i] = a[i]+b[i]+s;     //c[i]的计算方法
        s = 0;
        if(c[i]>=10){           //若产生进位,则求余并改变进位标志
            c[i] = c[i]%10;
            s = 1;
        }
    }
    while(c[len1]==0 && len1>0)           //去除前导0,并且至少保留一位
        len1--;
    for(int i=len1;i>=0;i--){   //输出
        cout<<c[i];
    }
    return 0;
}

11:大整数减法

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

求两个大的正整数相减的差。

输入

共2行,第1行是被减数a,第2行是减数b(a > b)。每个大整数不超过200位,不会有多余的前导零。

输出

一行,即所求的差

样例输入

9999999999999999999999999999999999999
9999999999999

样例输出

9999999999999999999999990000000000000

参考程序

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;

int main(){     //大数相减的核心思想是倒叙相减
    int a[202]={0},b[202]={0},c[202];
    string s1,s2;
    int len1,len2,s=0;  //s为借位标记
    cin>>s1>>s2;
    len1 = s1.length();
    len2 = s2.length();
    for(int i=0;i<len1;i++)
        a[i] = s1[len1-i-1]-'0';
    for(int i=0;i<len2;i++)
        b[i] = s2[len2-i-1]-'0';
    for(int i=0;i<len1;i++){
        if(a[i]-s<b[i]){
            c[i]=10+a[i]-s-b[i];
            s = 1;
        }else{
            c[i]=a[i]-s-b[i];
            s = 0;
        }
    }
    for(int i=len1-1;i>=0;i--){
        cout<<c[i];
    }
    return 0;
}

12:计算2的N次方

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

任意给定一个正整数N(N<=100),计算2的n次方的值。

输入

输入一个正整数N。

输出

输出2的N次方的值。

样例输入

5

样例输出

32

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int main(){         //大数的乘方运算的核心思想是倒叙相乘
    int max_len=50;
    int a[max_len]={0},n,s=0;
    cin>>n;
    a[0]=1;
    for(int i=0;i<n;i++){       //进行n次乘方运算
        for(int j=0;j<50;j++){
            a[j]=a[j]*2+s;
            s = 0;
            if(a[j]>=10){
                a[j] %= 10;
                s = 1;
            }
        }
    }
    max_len--;
    while(a[max_len]==0)        //找到不为零的最高位
        max_len--;
    for(int i=max_len;i>=0;i--)
        cout<<a[i];
    return 0;
}

13:大整数的因子

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

已知正整数k满足2<=k<=9,现给出长度最大为30位的十进制非负整数c,求所有能整除c的k。

输入

一个非负整数c,c的位数<=30。一个非负整数c,c的位数<=30。

输出

若存在满足 c%k == 0 的k,从小到大输出所有这样的k,相邻两个数之间用单个空格隔开;若没有这样的k,则输出"none"。

样例输入

30

样例输出

2 3 5 6 

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int main(){
    string str;
    int a[31],s=0,tag=0;    //tag记录是否有符合的k
    cin>>str;
    int len=str.length();
    for(int i=0;i<len;i++)  //将字符串复制给数组,方便处理
        a[i] = str[i]-'0';
    for(int i=2;i<=9;i++){  //尝试每一个除数是否成立
        s=0;
        for(int j=0;j<len;j++)  //模拟除法
            s = (a[j]+s*10)%i;
        if(s==0){
            tag=1;                //记录有符合的k
            cout<<i<<" ";
        }
    }
    if(tag==0)
        cout<<"none";
    return 0;
}

14:求10000以内n的阶乘

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

求10000以内n的阶乘。

输入

只有一行输入,整数n(0<=n<=10000)。

输出

一行,即n!的值。

样例输入

100

样例输出

93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int a[1000000]={0};

int main(){
    int n,temp=0,length=1;
    a[1]=1;
    cin>>n;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=length;j++){
            temp = a[j]*i+temp;
            a[j] = temp%10;
            temp /= 10;
            if(j==length&&temp>0){      //更新长度
                length++;
            }
        }
    }
    for(int i=length;i>0;i--)   //倒序输出
        cout<<a[i];
    return 0;
}

15:阶乘和

原题链接

总时间限制: 1000ms 内存限制: 65536kB

描述

用高精度计算出S=1!+2!+3!+…+n!(n≤50)

其中“!”表示阶乘,例如:5!=54321。

输入正整数N,输出计算结果S。

输入

一个正整数N。

输出

计算结果S。

样例输入

5

样例输出

153

参考程序

#include <iostream>
#include <cstdio>
using namespace std;

int main(){
    int n,temp=0,len1=1,len2=0,s=0,length=0;
    int a[100]={0};     //表示阶乘
    int sum[100]={0};   //表示总和
    a[1]=1;
    cin>>n;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=len1;j++){       //此循环计算阶乘
            temp = a[j]*i+temp;
            a[j] = temp%10;
            temp /= 10;
            if(j==len1&&temp>0){      //更新阶乘长度
                len1++;
            }
        }
        s=0;
        length = len1>len2?len1:len2;   //此循环计算sum
        for(int j=1;j<=length+1;j++){
            sum[j] = sum[j]+a[j]+s;
            s = 0;
            if(sum[j]>=10){
                sum[j] = sum[j]%10;
                s = 1;
            }
            len2 = sum[length+1]!=0?(length+1):length;  //更新sum长度
        }

    }
    for(int i=len2;i>0;i--)   //倒序输出
        cout<<sum[i];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值