文章目录
01:与指定数字相同的数的个数
总时间限制: 1000ms 内存限制: 65536kB
描述
输出一个整数序列中与指定数字相同的数的个数。
输入
输入包含三行:
第一行为N,表示整数序列的长度(N <= 100);
第二行为N个整数,整数之间以一个空格分开;
第三行包含一个整数,为指定的整数m。
输出
输出为N个数中与m相同的数的个数。
样例输入
3
2 3 2
2
样例输出
2
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int main(){
int a[100],N,m,num=0;
cin>>N;
for(int i=0;i<N;i++){
cin>>a[i];
}
cin>>m;
for(int i=0;i<N;i++){
if(a[i]==m)
num++;
}
cout<<num;
return 0;
}
02:陶陶摘苹果
总时间限制: 1000ms 内存限制: 65536kB
描述
陶陶家的院子里有一棵苹果树,每到秋天树上就会结出10个苹果。苹果成熟的时候,陶陶就会跑去摘苹果。陶陶有个30厘米高的板凳,当她不能直接用手摘到苹果的时候,就会踩到板凳上再试试。
现在已知10个苹果到地面的高度,以及陶陶把手伸直的时候能够达到的最大高度,请帮陶陶算一下她能够摘到的苹果的数目。假设她碰到苹果,苹果就会掉下来。
输入
包括两行数据。第一行包含10个100到200之间(包括100和200)的整数(以厘米为单位)分别表示10个苹果到地面的高度,两个相邻的整数之间用一个空格隔开。第二行只包括一个100到120之间(包含100和120)的整数(以厘米为单位),表示陶陶把手伸直的时候能够达到的最大高度。
输出
包括一行,这一行只包含一个整数,表示陶陶能够摘到的苹果的数目。
样例输入
100 200 150 140 129 134 167 198 200 111
110
样例输出
5
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int main(){
int a[10],h,num=0;
for(int i=0;i<10;i++)
cin>>a[i];
cin>>h;
for(int i=0;i<10;i++)
if(h+30>=a[i])
num++;
cout<<num;
return 0;
}
03:计算书费
总时间限制: 1000ms 内存限制: 65536kB
描述
下面是一个图书的单价表:
计算概论 28.9 元/本
数据结构与算法 32.7 元/本
数字逻辑 45.6元/本
C++程序设计教程 78 元/本
人工智能 35 元/本
计算机体系结构 86.2 元/本
编译原理 27.8元/本
操作系统 43 元/本
计算机网络 56 元/本
JAVA程序设计 65 元/本
给定每种图书购买的数量,编程计算应付的总费用。
输入
输入一行,包含10个整数(大于等于0,小于等于100),分别表示购买的《计算概论》、《数据结构与算法》、《数字逻辑》、《C++程序设计教程》、《人工智能》、《计算机体系结构》、《编译原理》、《操作系统》、《计算机网络》、《JAVA程序设计》的数量(以本为单位)。每两个整数用一个空格分开。
输出
输出一行,包含一个浮点数f,表示应付的总费用。精确到小数点后一位。
样例输入
1 5 8 10 5 1 1 2 3 4
样例输出
2140.2
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int main(){
int num;
float sum=0,a[10]={28.9,32.7,45.6,78,35,86.2,27.8,43,56,65};
for(int i=0;i<10;i++){
cin>>num;
sum += num*a[i];
}
printf("%.1f",sum);
return 0;
}
04:数组逆序重放
总时间限制: 1000ms 内存限制: 65536kB
描述
将一个数组中的值按逆序重新存放。例如,原来的顺序为8,6,5,4,1。要求改为1,4,5,6,8。
输入
输入为两行:第一行数组中元素的个数n(1<n<100),第二行是n个整数,每两个整数之间用空格分隔。
输出
输出为一行:输出逆序后数组的整数,每两个整数之间用空格分隔。
样例输入
5
8 6 5 4 1
样例输出
1 4 5 6 8
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int main(){
int n,a[100];
cin>>n;
for(int i=0;i<n;i++){
cin>>a[i];
}
for(int i=n-1;i>=0;i--){
cout<<a[i]<<" ";
}
return 0;
}
05:年龄与疾病
总时间限制: 1000ms 内存限制: 65536kB
描述
某医院想统计一下某项疾病的获得与否与年龄是否有关,需要对以前的诊断记录进行整理,按照0-18、19-35、36-60、61以上(含61)四个年龄段统计的患病人数占总患病人数的比例。
输入
共2行,第一行为过往病人的数目n(0 < n <= 100),第二行为每个病人患病时的年龄。
输出
按照0-18、19-35、36-60、61以上(含61)四个年龄段输出该段患病人数占总患病人数的比例,以百分比的形式输出,精确到小数点后两位。每个年龄段占一行,共四行。
样例输入
10
1 11 21 31 41 51 61 71 81 91
样例输出
20.00%
20.00%
20.00%
40.00%
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int main(){
int n,num[4]={0},a; //num四个数据为年龄组人数统计
cin>>n;
for(int i=0;i<n;i++){
cin>>a;
if(a<=18)
num[0]++; //统计各年龄人数
else if(a<=35)
num[1]++;
else if(a<=60)
num[2]++;
else
num[3]++;
}
for(int i=0;i<4;i++)
printf("%.2f%%\n",100.0*num[i]/n); //“%%”输出%
return 0;
}
06:校门外的树
总时间限制: 1000ms 内存限制: 65536kB
描述
某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米。我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置;数轴上的每个整数点,即0,1,2,……,L,都种有一棵树。
由于马路上有一些区域要用来建地铁。这些区域用它们在数轴上的起始点和终止点表示。已知任一区域的起始点和终止点的坐标都是整数,区域之间可能有重合的部分。现在要把这些区域中的树(包括区域端点处的两棵树)移走。你的任务是计算将这些树都移走后,马路上还有多少棵树。
输入
第一行有两个整数L(1 <= L <= 10000)和 M(1 <= M <= 100),L代表马路的长度,M代表区域的数目,L和M之间用一个空格隔开。接下来的M行每行包含两个不同的整数,用一个空格隔开,表示一个区域的起始点和终止点的坐标。
对于20%的数据,区域之间没有重合的部分;
对于其它的数据,区域之间有重合的情况。
输出
包括一行,这一行只包含一个整数,表示马路上剩余的树的数目。
样例输入
500 3
150 300
100 200
470 471
样例输出
298
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int main(){
int a[10001]={0},L,M,start,end,num=0; //最多10001颗树
cin>>L>>M;
for(int i=0;i<M;i++){
cin>>start>>end;
for(int j=start;j<=end;j++)
a[j]=1; //标记被移走
}
for(int i=0;i<=L;i++)
if(a[i]==0)
num++;
cout<<num;
return 0;
}
07:有趣的跳跃
总时间限制: 1000ms 内存限制: 65536kB
描述
一个长度为n(n>0)的序列中存在“有趣的跳跃”当前仅当相邻元素的差的绝对值经过排序后正好是从1到(n-1)。例如,1 4 2 3存在“有趣的跳跃”,因为差的绝对值分别为3,2,1。当然,任何只包含单个元素的序列一定存在“有趣的跳跃”。你需要写一个程序判定给定序列是否存在“有趣的跳跃”。
输入
一行,第一个数是n(0 < n < 3000),为序列长度,接下来有n个整数,依次为序列中各元素,各元素的绝对值均不超过1,000,000,000。
输出
一行,若该序列存在“有趣的跳跃”,输出"Jolly",否则输出"Not jolly"。
样例输入
4 1 4 2 3
样例输出
Jolly
参考程序
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int main (){
int tag[3000]={0},n;
long pre_a,a;
cin>>n>>a;
for(int i=1;i<n;i++){
pre_a = a;
cin>>a;
tag[(int)abs(a-pre_a)]=1;
}
if(n==1)
cout<<"Jolly";
else{
for(int i=1;i<=n-1;i++)
if(tag[i]==0){
cout<<"Not jolly";
return 0;
}
cout<<"Jolly";
}
return 0;
}
08:石头剪刀布
总时间限制: 1000ms 内存限制: 65536kB
描述
石头剪刀布是常见的猜拳游戏。石头胜剪刀,剪刀胜布,布胜石头。如果两个人出拳一样,则不分胜负。
一天,小A和小B正好在玩石头剪刀布。已知他们的出拳都是有周期性规律的,比如:“石头-布-石头-剪刀-石头-布-石头-剪刀……”,就是以“石头-布-石头-剪刀”为周期不断循环的。请问,小A和小B比了N轮之后,谁赢的轮数多?
输入
输入包含三行。
第一行包含三个整数:N,NA,NB,分别表示比了N轮,小A出拳的周期长度,小B出拳的周期长度。0 < N,NA,NB < 100。
第二行包含NA个整数,表示小A出拳的规律。
第三行包含NB个整数,表示小B出拳的规律。
其中,0表示“石头”,2表示“剪刀”,5表示“布”。相邻两个整数之间用单个空格隔开。
输出
输出一行,如果小A赢的轮数多,输出A;如果小B赢的轮数多,输出B;如果两人打平,输出draw。
样例输入
10 3 4
0 2 5
0 5 0 2
样例输出
A
提示
对于测试数据,猜拳过程为:
A:0 2 5 0 2 5 0 2 5 0
B:0 5 0 2 0 5 0 2 0 5
A赢了4轮,B赢了2轮,双方打平4轮,所以A赢的轮数多。
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int main(){
int a[100],b[100],numA=0,numB=0,n,na,nb; //a、b数组为每一轮的出拳,num为计数
cin>>n>>na>>nb;
for(int i=0;i<na;i++) //输入第一轮出拳
cin>>a[i];
for(int i=0;i<nb;i++)
cin>>b[i];
for(int i=na;i<n;i++){ //循环赋值全部轮出拳
a[i] = a[i%na];
}
for(int i=nb;i<n;i++){
b[i] = b[i%nb];
}
for(int i=0;i<n;i++){ //模拟出拳,比较胜负计数
if((a[i]==0&&b[i]==2) || (a[i]==2&&b[i]==5) || (a[i]==5&&b[i]==0))
numA++;
if((a[i]==0&&b[i]==5) || (a[i]==2&&b[i]==0) || (a[i]==5&&b[i]==2))
numB++;
}
if(numA>numB)
cout<<"A";
else if(numA<numB)
cout<<"B";
else
cout<<"draw";
return 0;
}
09:向量点积计算
总时间限制: 1000ms 内存限制: 65536kB
描述
在线性代数、计算几何中,向量点积是一种十分重要的运算。
给定两个n维向量a=(a1,a2,…,an)和b=(b1,b2,…,bn),求点积a·b=a1b1+a2b2+…+anbn。
输入
第一行是一个整数n。1 <= n <= 1000。
第二行包含n个整数a1,a2,…,an。
第三行包含n个整数b1,b2,…,bn。
相邻整数之间用单个空格隔开。每个整数的绝对值都不超过1000。
输出
一个整数,即两个向量的点积结果。
样例输入
3
1 4 6
2 1 5
样例输出
36
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int main(){
long sum=0; //最大的情况超过int表示范围
int n,a[1001],b[1001];
cin>>n;
for(int i=0;i<n;i++) //数组赋值
cin>>a[i];
for(int i=0;i<n;i++)
cin>>b[i];
for(int i=0;i<n;i++) //计算点积
sum += a[i]*b[i];
cout<<sum;
return 0;
}
10:大整数加法
总时间限制: 1000ms 内存限制: 65536kB
描述
求两个不超过200位的非负整数的和。
输入
有两行,每行是一个不超过200位的非负整数,可能有多余的前导0。
输出
一行,即相加后的结果。结果里不能有多余的前导0,即如果结果是342,那么就不能输出为0342。
样例输入
22222222222222222222
33333333333333333333
样例输出
55555555555555555555
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int main(){ //大数相加的核心思想是倒叙相加
int a[202]={0},b[202]={0},c[202]={0};
string s1,s2;
int len1,len2,s=0; //s为进位标记
cin>>s1>>s2;
len1 = s1.length();
len2 = s2.length();
for(int i=0;i<len1;i++) //将字符串倒序赋值给整数数组
a[i] = s1[len1-i-1]-'0';
for(int i=0;i<len2;i++)
b[i] = s2[len2-i-1]-'0';
len1 = len1>len2?len1:len2; //找到最长长度
for(int i=0;i<=len1;i++){ //c[0]--c[len1]计算
c[i] = a[i]+b[i]+s; //c[i]的计算方法
s = 0;
if(c[i]>=10){ //若产生进位,则求余并改变进位标志
c[i] = c[i]%10;
s = 1;
}
}
while(c[len1]==0 && len1>0) //去除前导0,并且至少保留一位
len1--;
for(int i=len1;i>=0;i--){ //输出
cout<<c[i];
}
return 0;
}
11:大整数减法
总时间限制: 1000ms 内存限制: 65536kB
描述
求两个大的正整数相减的差。
输入
共2行,第1行是被减数a,第2行是减数b(a > b)。每个大整数不超过200位,不会有多余的前导零。
输出
一行,即所求的差
样例输入
9999999999999999999999999999999999999
9999999999999
样例输出
9999999999999999999999990000000000000
参考程序
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int main(){ //大数相减的核心思想是倒叙相减
int a[202]={0},b[202]={0},c[202];
string s1,s2;
int len1,len2,s=0; //s为借位标记
cin>>s1>>s2;
len1 = s1.length();
len2 = s2.length();
for(int i=0;i<len1;i++)
a[i] = s1[len1-i-1]-'0';
for(int i=0;i<len2;i++)
b[i] = s2[len2-i-1]-'0';
for(int i=0;i<len1;i++){
if(a[i]-s<b[i]){
c[i]=10+a[i]-s-b[i];
s = 1;
}else{
c[i]=a[i]-s-b[i];
s = 0;
}
}
for(int i=len1-1;i>=0;i--){
cout<<c[i];
}
return 0;
}
12:计算2的N次方
总时间限制: 1000ms 内存限制: 65536kB
描述
任意给定一个正整数N(N<=100),计算2的n次方的值。
输入
输入一个正整数N。
输出
输出2的N次方的值。
样例输入
5
样例输出
32
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int main(){ //大数的乘方运算的核心思想是倒叙相乘
int max_len=50;
int a[max_len]={0},n,s=0;
cin>>n;
a[0]=1;
for(int i=0;i<n;i++){ //进行n次乘方运算
for(int j=0;j<50;j++){
a[j]=a[j]*2+s;
s = 0;
if(a[j]>=10){
a[j] %= 10;
s = 1;
}
}
}
max_len--;
while(a[max_len]==0) //找到不为零的最高位
max_len--;
for(int i=max_len;i>=0;i--)
cout<<a[i];
return 0;
}
13:大整数的因子
总时间限制: 1000ms 内存限制: 65536kB
描述
已知正整数k满足2<=k<=9,现给出长度最大为30位的十进制非负整数c,求所有能整除c的k。
输入
一个非负整数c,c的位数<=30。一个非负整数c,c的位数<=30。
输出
若存在满足 c%k == 0 的k,从小到大输出所有这样的k,相邻两个数之间用单个空格隔开;若没有这样的k,则输出"none"。
样例输入
30
样例输出
2 3 5 6
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int main(){
string str;
int a[31],s=0,tag=0; //tag记录是否有符合的k
cin>>str;
int len=str.length();
for(int i=0;i<len;i++) //将字符串复制给数组,方便处理
a[i] = str[i]-'0';
for(int i=2;i<=9;i++){ //尝试每一个除数是否成立
s=0;
for(int j=0;j<len;j++) //模拟除法
s = (a[j]+s*10)%i;
if(s==0){
tag=1; //记录有符合的k
cout<<i<<" ";
}
}
if(tag==0)
cout<<"none";
return 0;
}
14:求10000以内n的阶乘
总时间限制: 1000ms 内存限制: 65536kB
描述
求10000以内n的阶乘。
输入
只有一行输入,整数n(0<=n<=10000)。
输出
一行,即n!的值。
样例输入
100
样例输出
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int a[1000000]={0};
int main(){
int n,temp=0,length=1;
a[1]=1;
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=length;j++){
temp = a[j]*i+temp;
a[j] = temp%10;
temp /= 10;
if(j==length&&temp>0){ //更新长度
length++;
}
}
}
for(int i=length;i>0;i--) //倒序输出
cout<<a[i];
return 0;
}
15:阶乘和
总时间限制: 1000ms 内存限制: 65536kB
描述
用高精度计算出S=1!+2!+3!+…+n!(n≤50)
其中“!”表示阶乘,例如:5!=54321。
输入正整数N,输出计算结果S。
输入
一个正整数N。
输出
计算结果S。
样例输入
5
样例输出
153
参考程序
#include <iostream>
#include <cstdio>
using namespace std;
int main(){
int n,temp=0,len1=1,len2=0,s=0,length=0;
int a[100]={0}; //表示阶乘
int sum[100]={0}; //表示总和
a[1]=1;
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=len1;j++){ //此循环计算阶乘
temp = a[j]*i+temp;
a[j] = temp%10;
temp /= 10;
if(j==len1&&temp>0){ //更新阶乘长度
len1++;
}
}
s=0;
length = len1>len2?len1:len2; //此循环计算sum
for(int j=1;j<=length+1;j++){
sum[j] = sum[j]+a[j]+s;
s = 0;
if(sum[j]>=10){
sum[j] = sum[j]%10;
s = 1;
}
len2 = sum[length+1]!=0?(length+1):length; //更新sum长度
}
}
for(int i=len2;i>0;i--) //倒序输出
cout<<sum[i];
return 0;
}