自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(80)
  • 资源 (11)
  • 收藏
  • 关注

原创 ai帮我整理的我的原创技术清单【实时更新】

本文总结了陈墨仙在多个技术领域的原创研究成果,主要内容包括:1)数学理论方面,提出哥德巴赫猜想1+1的初等证明新方法和纳维-斯托克斯方程高阶范数有界性推导方法;2)椭圆曲线密码学领域,开发了从象限细分到解析法的完整ECDLP求解技术体系;3)算法优化方面,建立了递归转解析法的标准化流程;4)计算机视觉领域,设计了多种图像处理和质量检测算法;5)电磁建模和遥感数据处理技术;6)基因编辑治疗绝症方面的创新方法。各研究成果均包含详细的技术创新点和应用场景说明,并附有相关博客链接。

2025-10-05 11:30:08 664

原创 哥德巴赫猜想的严格证明——基于迭代规则框架与数学归纳法的完整推导-陈墨仙(附完整迭代规则)

本文构建了一套严格迭代规则框架证明哥德巴赫猜想,其核心包括:1)定义素数候选集P(n)(2≤p≤n/2)并以最大素数m₀为初始项;2)采用最大素因子迭代确保递减性;3)通过子场景补充低值分析。文章结合伯特兰定理和数学归纳法,证明序列必然终止于素数分解,并验证了从n=4到n=200的案例。最终结论表明该框架能严格证明任意偶数n≥4可表为两素数之和。

2025-10-29 05:25:10 950

原创 【正向证明】【陈墨仙】【给出完整迭代计算规则和论文】哥德巴赫猜想的严格证明——基于迭代规则框架与数学归纳法的完整推导

若\(p > n/2\),则\(C_k = n - p < n/2\)(互补项必小于\(n/2\)),而\(P(n)\)已包含所有≤\(n/2\)的素数——因此选\(>n/2\)的素数作为初始项,本质是“重复分析\(P(n)\)内素数的互补项”,无额外价值,故\(P(n)\)上限设为\(n/2\)既严谨又简洁。若\(C_{t+1}\)为合数,则\(m_{t+2} \leq C_{t+1}/3 < 3\)——但\(P(n)\)中无小于3的奇素数,矛盾,故\(C_{t+1}\)必为素数,序列终止(1步)。

2025-10-29 05:08:24 961

原创 基于互补素数对、最小素因子与切比雪夫定理的哥德巴赫猜想证明(修订版·回应评审意见)-陈墨仙

3. **对$n_0\geq16$的结论**:$n_0\geq16$时,$x=n_0/2\geq8$,$\text{lcm}(P(n_0))=p_{\text{max}}\#\geq x\#>\exp(0.8x)>2x=n_0$,故$\text{lcm}(P(n_0))>n_0$。- 由$m_{\text{min}}(n_0-p)\mid n_0-p$且$m_{\text{min}}(n_0-p)\mid n_0$,得$m_{\text{min}}(n_0-p)\mid p$;

2025-10-28 20:56:20 390

原创 基于互补素数对、最小素因子与切比雪夫定理的哥德巴赫猜想证明(含评审意见回应与逻辑修正)-陈墨仙

3. 若$m_{\text{min}}(q_0)\neq p_0$,且$m_{\text{min}}(q_0)$是素数(最小素因子定义),则$m_{\text{min}}(q_0)\notin P(n_0)$(因$P(n_0)$中所有素数$p$均满足“若$m_{\text{min}}(q)=p$则$m_{\text{min}}(q)\mid n_0$”,而此处$m_{\text{min}}(q_0)\nmid n_0$);

2025-10-28 20:30:31 363

原创 基于素数递减迭代的哥德巴赫猜想证明(终版·严格单调,修改了lcm相关部分)-陈墨仙

11. 考虑m_{t-1}的互补项n - m_{t-1}的最小素因子m_t,因m_t \geq m_{t-1}且m_t \mid n - m_{t-1},则n - m_{t-1} = m_t \cdot s(s \geq m_t \geq m_{t-1}),故n - m_{t-1} \geq m_{t-1}^2,即n \geq m_{t-1}^2 + m_{t-1};②若d是m的素因子,则m_{\text{min}} \leq d(最小性)。

2025-10-28 18:14:41 1060

原创 【反重力飞行器】从量子领域来看

量子场论认为引力由“引力子”传递,要探测引力子,需建造“能量足够高、灵敏度足够强”的探测器——但引力子与普通物质相互作用极弱,即便存在,也几乎无法被捕捉(类比:用渔网捞空气中的尘埃,且尘埃还会穿墙);当下我们能做的,是尊重科学规律,把精力放在“可落地的量子应用”(如计算、通信、测量)和“引力基础研究”(如引力波、精密重力测量) 上——这些“慢变量”,才是未来某天点燃“反重力引擎”的真正火种。即便某天诞生自洽的“量子引力理论”,也必须通过可重复、可观测的实验,证明“理论预测的引力微观特性真实存在”。

2025-10-20 12:13:50 450

原创 【反重力飞行器】超导磁悬浮是前哨

若把视野拉回“当前可落地的近场目标”,我国在**“类反重力”技术(如磁悬浮、气动弹性飞行器、高空浮空器)**已有大量实用化成果(如嫦娥五号的“起飞上升器”、大疆的无人机飞控算法),这些都是“向引力要效率”的阶段性技术。\ NB(偏差变化率负大,即间隙快速缩小) NM(偏差变化率负中,间隙较快缩小) NS(偏差变化率负小,间隙缓慢缩小) Z(偏差变化率零,间隙不变) PS(偏差变化率正小,间隙缓慢增大) PM(偏差变化率正中,间隙较快增大) PB(偏差变化率正大,间隙快速增大)

2025-10-20 11:57:06 1340

原创 【影子科学院】招新

我们的成员列表【刘如祥,陈墨仙】,院长刘如祥。我们的成果发布在csdn逆向菜鸟主页。招新门槛:自定一个学术界尚未解决的科学难题,你把他解决了,你就能加入我们。我们要求小组成员热爱祖国热爱人民尊重生命珍惜和平。我们是民间基于兴趣讨论科学的兴趣小组。

2025-10-16 13:31:30 119

原创 比特币私钥位数范围动态估计源代码

判断结果: 错误 这个例子错了是因为实际23,但按照24加了补偿值,你们自己改吧。估算范围: 24-bit (8388608 - 16777215)私钥 k = 8388607 (实际位长: 23)结合我发的另一篇源代码,你们知道怎么解密了吗?

2025-10-12 17:32:18 322

原创 【我们成功了!!!】大型椭圆曲线私钥求解源代码(分钟级别求解)

本文提出了一种基于象限特征的椭圆曲线离散对数问题(ECDLP)优化求解算法。针对secp256k1曲线,文章首先理论分析了椭圆曲线点坐标低比特位的象限特征与k值的关系,指出低2位特征具有较好的局部连续性但缺乏全局单调性。基于此,作者设计了局部象限映射算法,通过动态构建和扩展k值映射表,优先覆盖目标k值估计范围,并利用智能步长调整策略提高搜索效率。算法实现包含ECPoint类的象限编码方法和EllipticCurve类的优化点运算,通过实验验证了该方法对中等规模k值的有效求解。理论推导部分强调了放弃全局单调性

2025-10-12 13:28:03 294

原创 【关于椭圆曲线最后的总结性论文,包括了我之前7篇技术博客论文等】椭圆曲线离散对数问题(ECDLP)高效求解:从象限细分到解析法的完整技术体系

对于模$2^L$(如$2^{256}$),象限通过坐标的**最高有效位(MSB)** 判断:$x_{\text{MSB}}=0$表示$x < 2^{L-1}$,$x_{\text{MSB}}=1$表示$x \geq 2^{L-1}$,$y$同理。2. **对称性压缩**:若$k > n/2$,令$t = n - k$($t < n/2$),则$kP$的象限为$tP$的“$x$同象限、$y$反象限”(如$tP$在Ⅰ象限则$kP$在Ⅳ象限),范围进一步压缩至$[1, n/2]$;

2025-10-04 21:56:54 538

原创 解析法直接解密椭圆曲线-陈墨仙

**象限划分规律**:模$m$下的四象限定义完全由坐标与$m/2$的大小关系决定(如$x < m/2$且$y < m/2$为Ⅰ象限),且$kP$的象限随$k$的变化遵循**周期性**($k \equiv k + t \pmod{t}$,$t$为子群阶)与**对称性**($(n-k)P$与$kP$x同象限、y反象限);- 分界点$mid_i=(low_i + high_i)/2$,对应点$M_i=mid_i \cdot P$的象限为$Quad_{M_i}$;

2025-10-04 20:02:22 766

原创 基因编辑根治毒瘾和赌瘾

表达框总长度控制在4.7kb以内(AAV载体包装上限为5.0kb,预留0.3kb冗余避免包装失败),顺序为:U6启动子(260bp,驱动gRNA表达)- gRNA(19bp靶序列+85bp scaffold,总长104bp)- CMVmini启动子(220bp,驱动Cas9表达)- 高保真SpCas9-HF1(4100bp)- SV40 polyA(240bp),GFP报告基因(720bp)通过IRES序列(160bp)与Cas9串联,确保两者共表达率≥95%。

2025-10-03 14:22:46 691

原创 基因编辑根治精神分裂

仪器 生物安全柜(二级)、CO₂培养箱(37℃,5% CO₂)、倒置荧光显微镜(40-200×)、流式细胞仪(BD FACSCanto™)、全基因组测序仪(Illumina NovaSeq 6000) 细胞操作、培养、鉴定与质检。⑤全基因组测序与多基因风险评分(PRS)测定。1. 不良事件发生率:包括注射相关不良反应(头痛、恶心、脑出血)、免疫相关不良反应(发热、皮疹、排斥反应)、基因编辑相关不良反应(脱靶、细胞异常增殖),要求≥1级不良事件发生率<30%,≥3级严重不良事件发生率=0;

2025-10-03 12:58:55 710

原创 【给蔡磊】基因编辑根治渐冻症

载体靶向性改造(核心突破点):对AAV载体的“衣壳”进行突变(如AAV9的衣壳突变体AAV.PHP.B),增强其穿透血脑屏障的能力,同时让病毒仅识别运动神经元表面的特异性蛋白(如神经钙粘蛋白N-cadherin),减少对其他脑细胞(如胶质细胞)的感染;- 病毒载体递送(当前首选):用腺相关病毒(AAV,如AAV9)作为“载体”,将CRISPR组件整合到病毒基因组中,通过“鞘内注射”(注入脊髓蛛网膜下腔)或“脑内局部注射”,让病毒穿透血脑屏障感染运动神经元,释放CRISPR工具;

2025-09-26 16:00:33 1025 1

原创 递归算法到解析法的转换:基于固定规律的直接求解策略

本文提出,当问题存在**固定规律**且**计算过程无需新的逻辑构造**时,递归算法可转换为解析法直接求解。递归算法能够转换为解析法的关键在于问题本身存在**可直接表达的固定规律**,且求解过程中**无需动态构造新的逻辑分支**。非完全二叉树的结构不满足严格的层次节点分布规律(如最后一层节点不连续,或中间层存在空缺),因此**不存在固定的解析公式**,只能通过迭代法逐步处理。- 递归法:通过递归遍历树的每一层,累加节点数,时间复杂度`O(n)`,空间复杂度`O(h)`(`h`为树的深度);

2025-09-18 00:37:20 680

原创 【比特币在本篇论文彻底完蛋】 基于Kedlaya-Umans子群分解与有限域优化以及象限细分模压缩的secp256k1曲线ECDLP求解算法研究

斜率$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & (P_1 \neq P_2) \\ \frac{3x_1^2}{2y_1} & (P_1 = P_2) \end{cases}$(模$p$意义下的除法通过模逆实现);- **模逆计算**:利用费马小定理($\mathbb{F}_p$为素域,$x^{p-2} \equiv x^{-1}\ (\text{mod}\ p)$),通过Python内置`pow(x, p-2, p)`高效实现;

2025-09-01 18:17:30 641

原创 大型椭圆曲线k值高效求解策略(第二版):在象限细分-模压缩基础上基于分块预计算与周期性压缩的优化方法

**预计算阶段**:初始化\(T_{offset}\)需\(O(B)\)时间,\(T_{base}\)需\(O(\log_B n)\)时间,总耗时\(O(B + \log n / \log B)\)。利用\(B^mP = B \cdot (B^{m-1}P)\)的递归关系,仅需存储低阶块基元(如\(BP, B^2P\)),高阶基元通过低阶基元与块大小\(B\)的标量乘法动态生成,将\(T_{base}\)规模从\(O(m)\)压缩至\(O(\log m)\)。

2025-09-01 11:23:09 794 1

原创 大型椭圆曲线象限细分下基于模压缩的k值高效求解策略研究

否则更新$low = mid + 1$;- 计算$Q_{comp}$的象限$Quad_{Q\_comp}$与候选$k$压缩坐标的象限$Quad_{k\_comp}$,筛选出$Quad_{k\_comp} = Quad_{Q\_comp}$的候选$k$,更新$K$为筛选后的集合;- 计算$Q$的象限$Quad_Q$,若$Quad_Q$的y坐标处于$[m/2, m)$(即象限Ⅲ或Ⅳ),则令$Q = -Q$(负元变换:$(x, m-y)$),同时标记$k_{flag} = 1$(用于后续恢复真实$k$);

2025-09-01 10:37:12 801

原创 关于我和我的男朋友刘如祥

我就读西安电子科技大学期间因为宿舍矛盾和恋爱矛盾患了精神分裂症,休学一年后进入新的班级,在父母,老师,辅导员,同学的帮助下完成学业,顺利拿到了毕业证和学位证。近二十年来病情时好时坏,长期足不出户,直到前几年接触抖音直播从而遇到刘如祥,我才获得了心灵的平静。科学技术改变生活确实没有错,如果没有抖音,我也不会去直播,如果我不直播,刘如祥就不会看到我。作为女主播,我差点就成功了,曾经以一千多粉丝的账号做到直播时同时在线近三千人。不过那时我恋爱了,考虑到刘如祥的感受,我就没有在直播圈更进一步。

2025-08-31 15:39:34 132

原创 关于我为什么能有这么多成果的感想:感谢ai大模型

我解决一个问题的步骤通常是:1.咨询ai该问题背景,请ai分析该问题。2.提出初步解决方案,请ai评估,并请ai告知我相应的理论知识。4.将我与ai都认可的结论请ai写出论文初版。6.我将其他ai反馈给我的意见告知初始ai并再次与它反复交流进行解决。以往和现在的数学家科学家都是学了几十年各种理论的,而我跳过了这一步,直接通过ai补齐了这一步。我很惭愧,我并没有理论知识。我只有解决问题的方法,但我没有解决问题的方法的理论知识。以往的数学家埋头深耕自己的领域,理论知识异常扎实,付出了很多汗水。

2025-08-31 10:13:31 425

原创 基于能量方法的纳维-斯托克斯方程高阶范数有界性理论推导-陈墨仙

进一步,由\(H^1\)范数的定义\(\|\mathbf{v}\|_{H^1} = \left( \|\mathbf{v}\|_{L^2}^2 + \|\nabla \mathbf{v}\|_{L^2}^2 \right)^{1/2}\),且已通过低阶范数推导知\(\|\mathbf{v}\|_{L^2}\)有界,因此非线性项的增长可被\(\|\mathbf{v}\|_{H^1}\)的三次项控制。第6节分析物理意义与数学限制;该项是\(H^1\)范数推导中的核心难点,需通过泛函分析不等式控制其增长。

2025-08-29 19:54:05 937

原创 基于互补素数与最小素因子性质的哥德巴赫猜想证明-陈墨仙

写在前面,我本想投预印本,但arxvi需要背书,中国所有我找到的平台需要机构邮箱或教育邮箱,research square因为content type拒了我,所以我直接发csdn吧,爱咋咋地。的偶数可表为一个素数与一个至多含两个素因子的数之和),成为该领域里程碑成果。针对前期版本中“数学。合属性推导,完善逻辑链条,使证明满足预印本平台的学术规范,为哥德巴赫猜想提供初等。本文依托素数、合数的基本属性、最小素因子性质及素数公倍数增长规律,通过严谨的反证。的最小素因子,根据最小素因子的核心性质(对任意合数。

2025-08-29 19:35:48 1365 1

原创 椭圆曲线象限细分求k【模压缩】(第三篇)-陈墨仙

为1 → 跨界( y > 2^{255} );# --------------------------- 1. 模2^256 Koblitz椭圆曲线点类 ---------------------------# --------------------------- 3. 示例:模2^256场景测试 ---------------------------# --------------------------- 2. 模压缩+象限细分核心函数 ---------------------------

2025-08-20 12:04:34 1030

原创 椭圆曲线象限细分求k新增跨界适配

return {"可能的k值": [], "细分次数": 0, "最终范围宽度": 0, "备注": "无匹配k(Q可能不是P的倍数点)"}print(f"生成元P:({P.x}, {P.y}),阶n={n}(P的x={P.x}接近m/2={m/2},易跨界)")# ------------------- 示例:实际运行(含跨界场景测试) -------------------- P的x=11(m=23,m/2=11.5),k增大时kP的x易从“<11.5”变为“≥11.5”(跨界);

2025-08-20 11:08:39 587

原创 【摧毁比特币】椭圆曲线象限细分求k-陈墨仙

预设“分界点”(如n/8P、n/16P等),对比kP与分界点的x、y大小(利用坐标单调性:k越大,x/y单调递增/递减),每细分一次,k的范围缩小一半,直到唯一确定k。- 自定义象限:以模m为坐标范围(0≤x,y<m),按m/2划分四象限(如第一象限:x<m/2且y<m/2,第二象限:x≥m/2且y<m/2等);- 对称性压缩:若k>n/2,令t=n-k(t<n/2),kP的象限为“tP的x同象限、y相反象限”,仅需分析t∈[1,n/2]。

2025-08-19 01:19:30 628 1

原创 【求职】本人希望在福州找一份月薪超过2w的工作,有意者请私信我

希望是算法工作,外包不去。

2025-07-17 23:28:46 279

原创 【原创】【图像算法】高精密电子仪器组装异常检测

本文提出了一种基于语义分割的高精密电子仪器组装异常检测方法。该方法首先通过语义分割模型对电路板图像进行像素级分析,准确识别各元器件位置;然后提取元器件面积、位置、轮廓等特征,与标准参数进行对比;最后通过结构分析算法检测元器件损坏情况。系统实现了对面积偏差、位置偏移和结构异常三类缺陷的自动检测,并支持可视化结果展示和检测报告生成。实验表明,该方法能有效识别电子组装过程中的常见缺陷,为精密仪器质量控制提供了智能化的解决方案。

2025-07-17 23:10:49 293

原创 【原创】【图像算法】使用sigmoid预处理并用canny边缘检测高精度特征,单张图像处理时间小于100毫秒

摘要:本文提出了一种基于Sigmoid亮度均衡和优化Canny边缘检测的微小特征检测方法。该方法首先通过增强版Sigmoid算法进行亮度均衡,分为三步:亮度分离、对比度增强和质量修补;然后采用参数优化的Canny边缘检测,调整高斯滤波和双阈值参数以保留弱边缘特征。实验表明,该方法能有效增强微小特征的可见性并提高检测精度。代码实现完整,包含图像预处理、特征检测和结果可视化等功能模块。

2025-06-10 08:21:27 154

原创 【抖音直播证明已结束】证明三维NS方程高阶范数有界从而可证明光滑性和存在性

【代码】证明NS方程高阶范数有界从而可证明光滑性和存在性。

2025-06-07 23:14:28 268

原创 汉诺塔超级计算机堆栈区与数据区的协同

本文详细解析了汉诺塔超级计算机中数据区与堆栈区的协同设计机制。通过规律编码映射、并行任务分发和状态同步等关键技术,实现了计算逻辑与存储逻辑的解耦。系统采用预计算、内存共享和预测性预加载等优化手段,显著提升性能,支持从单核心到超算集群的无缝扩展。测试表明,协同设计方案相比传统递归方法在内存占用、执行效率和并行加速等方面均有显著优势,为大规模汉诺塔问题提供了高效可靠的解决方案。

2025-05-25 21:17:45 958

原创 汉诺塔超级计算机数据区结构和源代码详细设计

本文提出了一种基于非递归满秩二叉树的高效汉诺塔超级计算机数据区结构,通过直接计算节点位置生成移动序列,无需构建完整二叉树。该设计采用分层计算和预缓存技术,将时间复杂度优化至O(nlogn),空间复杂度保持O(n)。通过Python实现展示了核心算法,包括节点位置计算和移动序列生成。进一步设计了多核并行版本,利用任务分割和进程池实现并行处理,实测可获得3-4倍加速。相比传统递归方法,该方案消除了栈开销,特别适合大规模汉诺塔问题的求解,为算法优化提供了新思路。

2025-05-25 21:12:55 795

原创 本次以太坊升级如果有一个相关代币升级时出bug将引发连环暴雷

NFT平台更是如此,在铸造、交易NFT的过程中,涉及到支付代币、平台代币以及与各类智能合约的交互,以保障资产的所有权转移和交易的顺利进行。这样一来,平台将逐渐失去用户的支持,新用户不敢入驻,老用户纷纷离开,平台的发展将陷入停滞,在市场中的竞争力也将荡然无存。在NFT交易领域,若支付用的代币出现问题,那买卖双方的交易将无法正常完成。为了维护以太坊生态的健康发展,开发者、项目方和用户都应高度重视代币升级过程中的风险,加强测试和监控,提前做好应对措施,以避免因一个小的bug而引发整个生态系统的灾难。

2025-05-24 07:26:22 433

原创 根据《genius法案》利用锚定美债的稳定币进行cds合约套利或者稳定币发行者利用这种行为监管套利,是否会引发金融风险

例如,多个市场参与者同时进行类似的套利操作,可能导致整个金融系统对某些特定风险因素的暴露过度集中,一旦这些风险因素触发,如美债市场出现大幅波动或美国经济形势恶化,可能引发系统性的金融风险,威胁到整个金融体系的安全与稳定。一旦稳定币无法有效锚定美债,会引发市场对稳定币的信任危机,这种信用风险可能会扩散到整个金融体系,影响其他与稳定币相关的金融产品和市场参与者。例如,大量资金因套利目的流入或流出CDS市场,会使CDS合约价格大幅波动,进而影响美债等相关资产的价格,破坏金融市场的稳定。

2025-05-24 04:44:53 282

原创 基因编辑根治胰腺癌-陈墨仙

将已确定的靶点基因序列输入专业的 CRISPR 设计软件,设置合适参数,如 gRNA 长度(通常 17 - 20bp 左右 )、PAM 序列要求(与 Cas9 蛋白适配,常见如 NGG),软件会生成一系列候选 gRNA 序列,综合考量序列评分、潜在脱靶风险等因素,选出最优 gRNA 设计方案。- 细胞表型观察:倘若编辑的是与细胞增殖、存活相关的基因,就在体外培养编辑细胞,设立对照组,对比观察编辑组细胞的生长速度、形态、克隆形成能力等表型特征,若出现增殖减缓、凋亡增加等预期变化,提示gRNA有效。

2025-05-17 19:09:31 601

原创 汉诺塔超算堆栈结构编码和流程详细设计(附源代码)

本文详细设计了一种基于堆栈结构的非递归汉诺塔求解优化方案。通过预定义移动规律编码(如奇偶性循环、圆盘移动顺序),并固化为枚举值,避免了运行时动态计算。堆栈结构使用数组和指针跟踪圆盘位置,无需递归调用栈,降低了空间复杂度。初始化阶段根据圆盘总数确定规律编码,运行阶段通过查表直接获取移动步骤,每步计算复杂度为O(1)。为提升大规模汉诺塔问题的求解效率,方案支持数学公式直接求解和多核心并行处理,进一步优化了时间复杂度和硬件适配性。通过状态压缩、预计算和并行化等策略,该设计显著提升了汉诺塔问题的求解效率,适用于超级

2025-05-16 20:27:59 808

原创 【原创】【图像算法】检测照片镜头的强光水雾异物

【代码】【原创】【图像算法】检测照片镜头的强光水雾异物。

2025-04-30 01:26:53 226

原创 基于非递归求解的汉诺塔超级计算机堆栈与数据区设计方案

本设计方案基于汉诺塔非递归直接求解法,对超级计算机堆栈与数据区进行针对性优化。通过独特的数据组织、高效的操作优化及合理的数据区策略,降低算法复杂度,提升计算效率。后续将持续进行性能优化与评估,确保方案在实际应用中发挥最佳效能,推动汉诺塔超级计算机技术发展。方案整合了非递归求解的优势与计算机架构设计要点。欢迎大家随时和我沟通。

2025-04-29 22:39:47 405

原创 汉诺塔超级计算机详细设计一——三进制逻辑单元和存储单元的设计(原创,原作者)

可以采用优化的电路结构和算法,减少逻辑门的数量和延迟,提高运算速度。时序发生器可以基于三进制的计数器和逻辑门电路来实现,通过对时钟信号的分频和组合,产生不同的时序信号,如指令周期、机器周期、时钟周期等。在三进制计算机中,指令集需要重新设计,控制单元要能够识别和解析三进制指令,并根据指令的功能产生正确的控制信号,以选择合适的逻辑运算和数据通路。- 乘法器和除法器:乘法器可通过重复加法和移位操作来实现,除法器可通过重复减法和移位操作来实现,类似于二进制乘法器和除法器的设计,但需要根据三进制的特点进行调整。

2025-04-18 13:17:33 704

通过传入序列计算移动平均线序列

通过传入序列计算移动平均线序列。 使用方法: static funcMa ma60; static funcMa ma2; static funcMa ma22; static vector C;//收盘价序列 vector ma60temp = ma60.Caculate(C,N*2,0);//收盘价的均线序列 vector ma2temp = a2.Caculate(ma60temp,M1*2,0);//均线的均线 vector ma22temp =ma22.Caculate(ma2temp,M2*2,0);//均线的均线的均线

2015-07-20

汉诺塔递归与非递归两种算法的代码与结果对比

汉诺塔递归与非递归结果对比,结果是no differences,说明非递归算法没错。递归算法参考了csdn另一名博主的博客。

2019-09-24

用lua4.0模仿c++的指针和类

用lua4.0模仿c++的指针和类,可以继承重载,但是new无法改变成员变量

2008-11-30

helloworld.rar

完全不用递归解汉诺塔(VC6——65个盘子)(作者:陈墨仙)

2019-07-18

用vb6.0小程序验证我的汉诺塔直接计算移动,不用递归的设想

用vb6.0小程序验证我的汉诺塔直接计算移动,不用递归的设想

2018-10-31

见习小恶魔hge版源码

养成类游戏见习小恶魔源代码,附带游戏资源,游戏执行程序,需自行下载hge sdk,angelscript sdk。vista下编译不通过。

2008-11-25

遗传算法——旅行商问题

用遗传算法解决旅行商问题,也就是多个点怎么连线最短问题,使用mfc做界面。

2008-12-27

用lua4.0模仿c++的指针和类的脚本以及lua4.0编译器

用lua4.0模仿c++的指针和类的脚本以及lua4.0编译器,目前在new那方面还不完善,可以重载和继承。

2008-11-30

非递归解决汉诺塔,每一步都有确切解(奇数版)望老师指正-陈墨仙-西瓜西米露-20190924.rar

非递归解决汉诺塔,每一步都有确切解(奇数版)望老师指正-陈墨仙-西瓜西米露-20190924

2019-09-24

汉诺塔(非递归33个盘子)

// helloworld.cpp : Defines the entry point for the console application. // //by 陈墨仙 2019-07-18 //完全不用递归解汉诺塔 #include "stdafx.h" #include <windows.h> int h[34];//为了便于理解,0号元素不用,33个盘子 int a[4][34]; int b[4]; int jihao; int dijici; void printH() { //system&#40;"cls"&#41;; for(int i = 1;i<=34;i++) { printf("%d:%d\t",i,a[3][i]); } } bool jiancha(int * h)//检测是否在下面的都是编号小的 { int d[4]; d[1]=0; d[2]=0; d[3]=0; for(int j = 1;j<4;j++) { for(int i = 1;i<34;i++) { if(a[j][i]==0 || a[j][i]>a[j][i-1]) { } else { printf("error a[%d][%d] = %d a[%d][%d]=%d",j,i-1,a[j][i-1],j,i,a[j][i]); scanf("%d"); return false; } } } return true; } bool shunxu(int zhuzi) { for(int i = 1; i< b[zhuzi];i++) { if(a[zhuzi][i]==34-i) { } else { return false; } } return true; } bool chenggong(int n,int zhuzi)//n号盘是否都移到3 { int d = 0; int t = 34; for(int i = 33;i>33-n;i--) { if(a[zhuzi][34-i]!=i-n+1) { return false; } } return true; } int jc3()//检测3号柱的盘子有几个 { int d = 0; int t = 34; for(int i = 33;i>0;i--) { if(h[i]==3) { d=d+1; t = i; } } return d; } int jc1()//检测1号柱的盘子有几个 { int d = 0; int t = 34; for(int i = 33;i>0;i--) { if(h[i]==1) { d=d+1; t = i; } } return d; } void initH() { for(int i = 0;i<34;i++) { h[i]=1; a[1][i]=i; a[2][i]=0; a[3][i]=0; } b[1]=34; b[2]=1; b[3]=1; } int jc2()//检测2号柱从33往下盘子有几个 { int d = 0; int t = 34; for(int i = 33;i>0;i--) { if(h[i]==2) { d=d+1; t = i; } } return d; } int getTop(int zhuzi) { int d = 0; int t = 0; for(int i = 1;i<34;i++) { if(h[i]==zhuzi && i>t) { t = i; } } return t; } bool jiou(int s) { if(s % 2 == 0) { return true; } else { return false; } } void change(int i,int yuan,int mubiao) { if(h[i] == yuan) { h[i] = mubiao; a[mubiao][b[mubiao]]=i; b[mubiao]=b[mubiao]+1; a[yuan][b[yuan]]=0; b[yuan]=b[yuan]-1; printf("h[%d]:%d->%d",i,yuan,mubiao); } else { printf("Error h[%d] = %d",i,h[i]); scanf("%d"); } jiancha(h); } int FastLog2(int x) { float fx; unsigned long ix, exp; fx = (float)x; ix = *(unsigned long*)&fx; exp = (ix >> 23) & 0xFF; return exp - 127; } int chu2(int n ,int cishu) { for(int j = 1; j<= cishu;j++) { n=n/2; } return n; } void jihaopan(int n) { int i = 1; int yuan = n; while(1) { if(n%2==1) { jihao = i; dijici = chu2(yuan,i)+1; break; } n=n/2; i=i+1; } //printf("几号盘%d,第几次%d",jihao,dijici); } int main(int argc, char* argv[]) { printf("汉诺塔!\n"); int times = 0; initH(); int ji = 1; for(int i = 1;i<5559060534555523;i++) { jihaopan(i); if(jiou(jihao)==false) { int tmp; tmp = dijici%3; if(tmp==1) { change(getTop(1),1,3); } else if(tmp==2) { change(getTop(3),3,2); } else { change(getTop(2),2,1); } } else { int tmp; tmp = dijici%3; if(tmp==1) { change(getTop(1),1,2); } else if(tmp==2) { change(getTop(2),2,3); } else { change(getTop(3),3,1); } } if(chenggong(33,3)) { printf("sssss"); break; } } return 0; }

2019-07-19

angelscript sdk

angelscript2.9.1sdk,配套hge版见习小恶魔

2008-12-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除