分形-Mandelbrot集MATLAB代码

本文介绍了曼德博集的基本概念,包括其数学定义、迭代过程以及MATLAB代码示例。曼德博集以其复杂的分形结构和自相似性而著名,展示了在复平面上的美丽图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 分形中的曼德博集(Mandelbrot Set)

曼德博集(Mandelbrot Set)是一种被广泛研究的分形,由法国数学家本华·曼德博特于20世纪80年代提出。它在复平面中定义,由所有满足特定性质的复数点组成。

曼德博集的定义基于一个简单的迭代公式:

z_{n+1} = z_{n}^2 + c

其中,c为复数平面上的一个点,z为复数,并且起始值为0(即z_0 = 0)。具体来说,对于复平面上的每一个点c,都使用上述公式进行迭代。如果经过有限次迭代后,z的模值(绝对值)不超过2,那么这个点c就属于曼德博集。

更严谨的定义是,如果对于复平面上的某一点c,当n趋于无穷大时,上述序列的模值不超过2,那么这个点c就属于曼德博集。实际操作中,通常会设定一个最大迭代次数,例如1000次,如果1000次迭代后,z的模值仍然不超过2,那么就认为这个点c属于曼德博集。

曼德博集的分形图像非常漂亮,边界区域充满了复杂的细节。并且,曼德博集具有自相似性,也就是说,无论你放大多少倍观察,都能看到相似的结构。这是分形的一个重要特性。

2.MATLAB代码

clear all;clc;close all;

% Mandelbrot 集

% 参数

xRange = [-2.5, 1.5];

yRange = [-2, 2];

resolution = 500;

maxIter = 500;

% 生成复杂网格

[x, y] = meshgrid(linspace(xRange(1), xRange(2), resolution), linspace(yRange(1), yRange(2), resolution));

c = x + 1i * y;

z = c;

% Mandelbrot集计算

mandelbrotSet = ones(size(c));

for n = 1:maxIter

    z = z.^2 + c;

    outside = abs(z) > 2;

    z(outside) = 2;

    mandelbrotSet(outside) = 0;

end

% 绘图显示

figure;

imagesc(xRange, yRange, mandelbrotSet);

colormap([1 1 1; 0 0 0]);

axis square;

3.程序结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB代码顾问

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值