欧式看涨期权(Call Option)和欧式看跌期权(Put Option)的Black-Scholes定价模型:
对于欧式看涨期权的价格 ( C ),公式为:
对于欧式看跌期权的价格 ( P ),公式为:
其中:
S 是标的资产的当前价格,
X 是期权的执行价格,
r 是无风险利率,
T 是期权的到期时间(以年为单位),
是标的资产的波动率,
N(d) 是标准正态分布的累积分布函数,
和
是由以下公式定义的:
这些公式是在假设市场无摩擦(即没有交易成本和税收)、资产可以无限分割、没有套利机会、可以无风险地以无风险利率借贷资金等条件下得出的。
完整MATLAB代码见: https://download.csdn.net/download/corn1949/88959698
MATLAB主程序如下:
clc;clear all;close all;warning off;%关闭警报
%% 1.我写的函数
% B-S公式定价
S0=42;%资产当前价格
K=40;%期权敲定价格
r=0.1;%年化无风险利率 注意不是资产预期收益率
T=1;%到期时间,年为单位
Volatility=0.2;%波动率
[Call,Put]=mybsfun(S0,K,r,T,Volatility);%欧氏期权定价
disp('B-S欧氏看涨期权价格');
Call
disp('B-S欧氏看跌期权价格');
Put
%% 2.MATLAB自带的函数
Price=42;%某股票价格
Strike=40;%期权敲定价格
Rate=0.1;%年化无风险利率
Time=1;%到期时间
Volatility=0.2;%波动率
[Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility);%欧氏期权定价
disp('B-S欧氏看涨期权价格');
Call
disp('B-S欧氏看跌期权价格');
Put
%% 3.蒙特卡洛法
% 3.1 先股价仿真(几何布朗运动)
M=10000; %number of trajectories of Geometric Brownian motion 几何布朗运动的仿真轨迹数
N=52;%Number of steps in one trajectory 一年52周
S0=10; %initial point 初始股价
T=1;%Final Time in years in trajectory
mu=0.03;% 周平均收益率,记得和N关联好
r=mu;% 无风险利率
sigma=0.1;%volatility 周平均波动率
dt=T/N; %时间步长
Sqrtdt=sqrt(dt);
S(1:M,1)=S0;
for j=1:M %轨迹数
for i = 2:N+1 %每个时间步的价格
S(j,i)=S(j,i-1)*exp((mu-sigma^2/2)*dt+sigma*Sqrtdt*randn);
end
end
t=0:dt:T;
figure;
plot(t,S);
title('price of the stock');
% 3.2价格=××的均值
% 看涨期权 call
K=12;%敲定价格
E=max(S(:,end)-K,0);% M个轨迹时间完成时的股价减去敲定价格, 有赚的部分取出来平均就是盈利
Call01=mean(E)*exp(-r*T) % 盈利折算到现在
% 看跌期权 put ok!
K=12;%敲定价格
E=max(K-S(:,end),0);% M个轨迹时间完成时的股价减去敲定价格, 有赚的部分取出来平均就是盈利
Put01=mean(E)*exp(-r*T) % 盈利折算到现在
[Call, Put] = blsprice(S0, K, r, T, sigma)
程序结果如下:
B-S欧氏看涨期权价格
Call =
6.83707164710122
B-S欧氏看跌期权价格
Put =
1.0305683685396
B-S欧氏看涨期权价格
Call =
6.83707164710122
B-S欧氏看跌期权价格
Put =
1.0305683685396
Call01 =
0.0308403559199742
Put01 =
1.68651458592541
Call =
0.0299623203339537
Put =
1.67530872291605
>>
完整MATLAB代码见:https://download.csdn.net/download/corn1949/88959698https://download.csdn.net/download/corn1949/88959698