【BZOJ】3811: 玛里苟斯-拆位 & 线性基/高斯消元

传送门:bzoj3811


题解

法1(线性基):
根据 k ≤ 5 k\leq 5 k5分类讨论并拆位:

  • k = 1 k=1 k=1时:对于某一位,若数列中所有数该位不全为0,则出现奇数个1的概率必然为 1 2 \frac{1}{2} 21(假设有 m m m个数该位为 1 1 1 2 m 2^m 2m种方案中显然大小一半为奇一半为偶)。答案即为所有数异或和/2。
  • k = 2 k=2 k=2时,设第 i i i位异或和为1的概率为 w i w_i wi ( ∑ w i 2 i ) 2 = ∑ i ∑ j ( w i w j 2 i + j ) (\sum w_i 2^i)^2=\sum _i \sum _j (w_iw_j 2^{i+j}) (wi2i)2=ij(wiwj2i+j),不可统计的平方的期望转成了指定两位乘积的期望(同时为1的概率)。若数列中所有数第 i , j i,j i,j位都不全为0,则概率为 1 2 × 1 2 = 1 4 \frac 12\times \frac 12=\frac 14 21×21=41(*注意特判,对于所有数它们的第 i , j i,j i,j位都相同时,概率为 1 2 \frac 12 21
  • k ≥ 3 k\geq 3 k3时, a i ≤ 2 21 a_i\leq 2^{21} ai221,暴力线性基统计即可,注意中间过程答案可能溢出 2 63 2^{63} 263,所以设线性基有效位数为 m m m,记录 a = ⌊ x k 2 m ⌋ , b = x k   m o d   2 m a=\lfloor\frac{x^k}{2^m}\rfloor,b=x^k \ mod \ 2^m a=2mxk,b=xk mod 2m,而 x k + 1 = a × x + ⌊ b × x 2 m ⌋ + ( b × x   m o d   2 m ) x^{k+1}=a\times x+\lfloor\frac{b\times x}{2^m} \rfloor+(b\times x \ mod \ 2^m) xk+1=a×x+2mb×x+(b×x mod 2m),即 a ′ = a + ⌊ b × x 2 m ⌋ , b ′ = b × x   m o d   2 m a'=a+\lfloor\frac{b\times x}{2^m} \rfloor,b'=b\times x \ mod \ 2^m a=a+2mb×x,b=b×x mod 2m

法2(高斯消元):

其实就是法1中 k = 2 k=2 k=2的拓展。

因为答案 ≤ 2 63 \leq 2^{63} 263,所以
k = 1 → a i ≤ 2 63 k=1\to a_i\leq 2^{63} k=1ai263
k = 2 → a i ≤ 2 32 k=2\to a_i\leq 2^{32} k=2ai232
k = 3 → a i ≤ 2 21 k=3\to a_i\leq 2^{21} k=3ai221
k = 4 → a i ≤ 2 16 k=4\to a_i\leq 2^{16} k=4ai216
k = 5 → a i ≤ 2 13 k=5\to a_i\leq 2^{13} k=5ai213

假设 a i ≤ 2 m a_i\leq 2^m ai2m,则答案 ( ∑ w i 2 i ) k = ∑ x 1 . . . ∑ x k ( w x 1 . . . w x k 2 ∑ x i ) (\sum w_i 2^i)^k=\sum _{x_1} ...\sum_{x_k} (w_{x_1}...w_{x_k} 2^{\sum x_i}) (wi2i)k=x1...xk(wx1...wxk2xi)

暴力 O ( m k ) O(m^k) O(mk)枚举 k k k个指定的位,剩下的问题就是求解 { x 1 , . . . , x k } \{x_1,...,x_k\} {x1,...,xk}均为1的概率,可以列出 k k k n n n元一次异或方程组,高斯消元求解。概率即为 1 2 非 零 行 数 \frac12^{非零行数} 21

复 杂 度 O ( 能 过 ) 复杂度O(能过) O()


代码

注意开 unsigned long long \text{unsigned long long} unsigned long long

法1

#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
const int N=1e5+10;

int n,K;
ll a[N],b[65],ans,res;

char cp;
template<class T>inline void rd(T &x)
{
	cp=getchar();x=0;
	for(;!isdigit(cp);cp=getchar());
	for(;isdigit(cp);cp=getchar()) x=x*10+(cp^48);
}

inline void sol1()
{
	for(int i=1;i<=n;++i) ans|=a[i];
	printf("%llu",ans>>1);
	puts((ans&1)?".5":"");
}

inline void sol2()
{
	int i,j,k;ll sum=0;
	for(i=1;i<=n;++i) sum|=a[i];
	for(i=0;i<33;++i) if((sum>>i)&1)
	 for(j=0;j<33;++j) if((sum>>j)&1){
	 	for(k=1;k<=n && ((a[k]>>i)&1)==((a[k]>>j)&1);++k);
	 	if((!i)&&(!j)) {res++;continue;}
		if(k>n) ans+=1uLL<<(i+j-1);
	 	else i+j<2?res++:ans+=1uLL<<(i+j-2);
	}
    ans+=res>>1;
	printf("%llu",ans);
	puts((res&1)?".5":"");
}

int cnt,S;
ll g[65];

inline void sol3()
{
	int i,j;ll v,x,y;
	for(i=1;i<=n;++i)
		for(v=a[i],j=21;(~j)&&v;--j) if((v>>j)&1){
			if(b[j]) v^=b[j];
			else{b[j]=v;g[cnt++]=v;break;}
		}
	S=(1<<cnt)-1;
	for(i=0;i<=S;++i){
		for(v=0LL,j=0;j<cnt;++j) if((i>>j)&1) v^=g[j];
		for(x=0,y=1,j=0;j<K;++j){
			x*=v;y*=v;x+=(y>>cnt);y&=S;
		}
		ans+=x;res+=y;ans+=(res>>cnt);res&=S;
	}
	printf("%llu",ans);
	puts(res?".5":"");
}

int main(){
	rd(n);rd(K);
	for(int i=1;i<=n;++i) rd(a[i]);
	if(K==1) sol1();
	else if(K==2) sol2();
	else sol3();
	return 0; 
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值