查并集

2

学习链接

注:

在合并完所有的节点之后
加一句 for(int i = 0; i < n; i++) Find(i);
将所有的节点的根节点查找一遍,这样能保证所有的同根节点的指向都是根节点 ,不然会导致一些节点所存的节点还位于某个分支节点,这时并不指向根节点,在求同根节点的节点数时会导致错误。

路径压缩参考博客
非递归路径压缩

int Find(int x)
{
int r = x, j, k = x;
while(r != bcj[r]) r = bcj[r]; // 寻找根节点
while(k != r)
{
j = bcj[k]; // 暂存此时k的父节点
bcj[k] = r; // 将k的父节点改为根节点
k = j; // k移到父节点 直至全改为根节点
}
return r;
}
递归路径压缩

int Findd(int x)
{
return bcj[x] == x ? x : bcj[x] = Findd(bcj[x]);
}

合并
void Union(int x,int y)
{
x = Findd(x);// x变成x的根节点
y = Findd(y);// y变成y的根节点
if(x != y) bcj[x] = y; // 根节点不同 x的根节点改成y
}

注:记得更新根节点
在合并完所有节点之后
加一句 for(int i = 0; i < n; i++) Find(i);
这样能保证所有的节点都指向根节点,不然还会一些节点指向的分支节点,在求位于同根节点的节点数时会出错。
(虽然在求这个节点的根节点时,通过Find函数的路径压缩,会求出根节点,但是求之前保存的节点并不是根节点,所有要求一下)
eg:poj 1611
ac代码

#include<iostream>
#include<cstdio>
using namespace std;
const int Max = (int)1e5 + 9; 
int t,n,m;
int bcj[Max];
int Find(int x)
{
	int r = x, j, k = x;
	while(r != bcj[r]) r = bcj[r]; // 寻找根节点 
	while(k != r)  
	{
		j = bcj[k];  // 暂存此时k的父节点 
		bcj[k] = r;  //  将k的父节点改为根节点 
		k = j;  //  k移到父节点   直至全改为根节点  
	}
	return r;
}
int Findd(int x)
{
	return bcj[x] == x ? x : bcj[x] = Findd(bcj[x]); 
}
void Union(int x,int y)
{
	x = Findd(x);//  x变成x的根节点 
	y = Findd(y);//   y变成y的根节点 
	
	if(x != y) bcj[x] = y;
}
/*
if(x == 0 && y != 0) bcj[y] = x;
	else if(y == 0 && x != 0) bcj[x] = y;
*/
void work()
{	
	for(int i = 0; i < n; i++) bcj[i] = i;
	int x, y, sum = 0, t;
	while(m--)
	{
		scanf("%d %d", &t, &x);
		for(int i = 1; i < t; i++)
		{
			scanf(" %d", &y); Union(x, y);
		}
	}
	
	for(int i = 0; i < n; i++) Find(i);// 更新根节点
	int p = bcj[0];//  保存一下0号嫌疑人的根节点
	
	for(int i = 0; i < n; i++)
	{
		if(bcj[i] == p) sum++;// 相同就是嫌疑人
		//printf("%d %d\n",i,bcj[i]);
	}
	cout << sum << endl;
}
int main()
{
	
	while(scanf("%d %d", &n, &m), m + n) 
		work();
	return 0;
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页