注:
在合并完所有的节点之后
加一句 for(int i = 0; i < n; i++) Find(i);
将所有的节点的根节点查找一遍,这样能保证所有的同根节点的指向都是根节点 ,不然会导致一些节点所存的节点还位于某个分支节点,这时并不指向根节点,在求同根节点的节点数时会导致错误。
路径压缩参考博客
非递归路径压缩
int Find(int x)
{
int r = x, j, k = x;
while(r != bcj[r]) r = bcj[r]; // 寻找根节点
while(k != r)
{
j = bcj[k]; // 暂存此时k的父节点
bcj[k] = r; // 将k的父节点改为根节点
k = j; // k移到父节点 直至全改为根节点
}
return r;
}
递归路径压缩
int Findd(int x)
{
return bcj[x] == x ? x : bcj[x] = Findd(bcj[x]);
}
合并
void Union(int x,int y)
{
x = Findd(x);// x变成x的根节点
y = Findd(y);// y变成y的根节点
if(x != y) bcj[x] = y; // 根节点不同 x的根节点改成y
}
注:记得更新根节点
在合并完所有节点之后
加一句 for(int i = 0; i < n; i++) Find(i);
这样能保证所有的节点都指向根节点,不然还会一些节点指向的分支节点,在求位于同根节点的节点数时会出错。
(虽然在求这个节点的根节点时,通过Find函数的路径压缩,会求出根节点,但是求之前保存的节点并不是根节点,所有要求一下)
eg:poj 1611
ac代码
#include<iostream>
#include<cstdio>
using namespace std;
const int Max = (int)1e5 + 9;
int t,n,m;
int bcj[Max];
int Find(int x)
{
int r = x, j, k = x;
while(r != bcj[r]) r = bcj[r]; // 寻找根节点
while(k != r)
{
j = bcj[k]; // 暂存此时k的父节点
bcj[k] = r; // 将k的父节点改为根节点
k = j; // k移到父节点 直至全改为根节点
}
return r;
}
int Findd(int x)
{
return bcj[x] == x ? x : bcj[x] = Findd(bcj[x]);
}
void Union(int x,int y)
{
x = Findd(x);// x变成x的根节点
y = Findd(y);// y变成y的根节点
if(x != y) bcj[x] = y;
}
/*
if(x == 0 && y != 0) bcj[y] = x;
else if(y == 0 && x != 0) bcj[x] = y;
*/
void work()
{
for(int i = 0; i < n; i++) bcj[i] = i;
int x, y, sum = 0, t;
while(m--)
{
scanf("%d %d", &t, &x);
for(int i = 1; i < t; i++)
{
scanf(" %d", &y); Union(x, y);
}
}
for(int i = 0; i < n; i++) Find(i);// 更新根节点
int p = bcj[0];// 保存一下0号嫌疑人的根节点
for(int i = 0; i < n; i++)
{
if(bcj[i] == p) sum++;// 相同就是嫌疑人
//printf("%d %d\n",i,bcj[i]);
}
cout << sum << endl;
}
int main()
{
while(scanf("%d %d", &n, &m), m + n)
work();
return 0;
}