#709 div. 2 B 数学 C 模拟贪心

B. Restore Modulo
看榜靠前的发现这么个代码很奇妙
首先分析下题目,这个数列如果没有mod m,妥妥的一个等差数列
等差数列每个值都mod m,设当前是x,下一项要么是 x + c,要么是 x - (m - c),可以推出ai - ai-1的 要么是 c,要么是 c - m 。
然后发现相邻的差的的差的绝对值要么是 0, 要么是 m

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll NN=1e6+10;
int n;
int main()
{
    int t=1; cin >> t;
    while(t--)
    {
        scanf("%d" , &n);
        ll a[n];
        ll m = 0;
        for (ll &x : a)
            scanf("%lld"  ,&x);
        for (ll i = 1; i < n - 1 ; i++)
        	m = __gcd(m, abs(a[i + 1] + a[i - 1] - 2 * a[i]));

        if (m == 0)
            printf("0\n");
        else if (m <= *max_element(a, a+n))
            printf("-1\n");
        else
            printf("%lld %lld\n" ,  m, (a[1] - a[0] + m) % m);
    }
    return 0;
}

C. Basic Diplomacy
贪心
把只有一个人的固定,多人的选一个即可

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 9;
int T, n, m, x, k;
map <int,int> ma;
vector <int> ans, a[maxn];
void work()
{
	ma.clear(); ans.clear();
	int Max = 0;
	scanf("%d %d", &n, &m);
	for(int i = 1; i <= m; ++i) a[i].clear();
	for(int i = 1; i <= m; ++i)
	{
		scanf("%d", &k);
		for(int j = 1; j <= k; ++j)
		{
			scanf("%d", &x);
			a[i].push_back(x);
		}
		if(k == 1)	ma[a[i][0]]++;
		Max = max(Max, ma[a[i][0]]);
	}
	if(Max > (m + 1) / 2){// 某个人在只有一个人的天数中超过了要求,输出NO
		puts("NO"); return;
	}
	for(int i = 1; i <= m; ++i)
	{
		if(a[i].size() > 1)
		{
			for(int j = 0; j < a[i].size(); ++j)
			{
				int t = a[i][j];
				if(ma[t] + 1 <= (m + 1) / 2)
				{
					ans.push_back(t); ma[t]++;break;
				}
			}
		}
		else ans.push_back(a[i][0]);
		
	}
	puts("YES");
	for(int i = 0; i < ans.size(); ++i)
	{
		if(i > 0) cout << " ";
		cout << ans[i];
	}
	cout << endl;
}
int main()
{
	cin >> T;while(T--)
		work();
	return 0;
}
给出详细地步骤,指出如何实现以下功能好的,下面是关于Python排课软件的设计介绍。排课问题是典型的约束满足问题(CSP),涉及到许多复杂的规则和条件。以下是设计这类软件的基本思路和技术要点: ### 设计思路 1. **需求分析** - 明确目标:确定要解决的具体问题是什么,比如是给学校安排课程表还是企业培训计划等。 - 收集信息:了解所有参与者的需求,包括教师、学生以及其他相关人员的时间偏好、教室可用性等因素。 2. **模型建立** - 定义实体:识别出参与排课的主要元素,如班级、科目、老师、时间段、教室等。 - 设置约束条件:列出所有的硬性和软性约束,例如每门课每周最多多少节课;某个老师的特定时间不可上课;尽量避免连续多节同科目的情况发生等等。 3. **算法选择** - 基础方法:可以先用简单的贪心算法初步生成一个可行方案作为基准线。 - 高级优化:引入更智能的搜索技术来寻找更好的解决方案,如遗传算法(GA)、粒子群优化(PSO)、模拟退火(SA)或其他启发式搜索算法。 4. **用户界面** - 开发友好的前端页面供管理员录入数据并查看结果。 - 提供导出功能以便将最终排定后的课表保存下来分发给各方使用。 5. **测试与评估** - 对自动生成的结果进行全面检查,确保其符合预期的要求并且合理实用。 - 根据反馈不断调整改进直至满意为止。 ### 技术实现建议 - **后端开发**: - 使用Python编写核心逻辑部分,结合Django或Flask框架搭建服务器API接口。 - **数据库管理**: - 选用MySQL或者PostgreSQL存储大量的静态配置信息及动态变化的数据记录。 - **算法库应用**: - 调用`python-constraint`库帮助处理复杂的组合数学问题; - 若需要更高效的全局寻优,则考虑集成第三方机器学习平台提供的黑盒优化服务,如Hyperopt-Sklearn。 - **可视化展示**: - 利用Plotly Dash创建交互式的图表组件,让管理者能够直观地看到各项指标的表现状况。 - 或者借助Matplotlib/Pandas等绘图工具直接嵌入至HTML模板里显示关键统计数字。 综上所述,通过合理的架构规划加上适当的工具链配合,完全可以打造出一套高效稳定的Python排课系统!
最新发布
03-13
<think>好的,用户之前询问了关于Python排课软件的设计,现在他进一步要求给出详细的实现步骤。首先,我需要回顾之前的回答,确保这次的内容更具体,并且覆盖实现的具体步骤。用户可能希望了解从零开始如何构建这样一个系统,包括数据模型、算法实现、前后端整合等细节。 用户的需求可能包括如何具体定义实体和约束,如何选择并应用算法,以及如何将这些模块整合到一个完整的系统中。需要注意的是,用户可能对技术细节感兴趣,比如使用哪些Python库,如何设计数据库表结构,以及前后端如何交互等。 我需要将之前的概述转化为分步骤的指南,每个步骤需要详细说明实现方法。例如,在数据模型设计部分,需要给出具体的类定义和数据库表结构。在约束处理部分,需要解释如何将硬约束和软约束转化为代码逻辑或算法参数。 同时,用户可能关心实际编码中的例子,比如如何使用python-constraint库,或者遗传算法的具体实现步骤。因此,我需要提供代码片段或伪代码来说明关键部分的实现。此外,前后端交互和可视化展示也需要具体的实现建议,比如使用Flask构建API,或者使用Dash创建界面。 还需要考虑用户可能遇到的常见问题,例如如何处理大量数据的性能问题,如何测试排课算法的有效性,以及如何确保系统的稳定性和安全性。在步骤中应该提到这些方面,给出最佳实践或建议。 最后,总结部分需要强调模块化设计和迭代开发的重要性,帮助用户理解整个开发流程,并鼓励他们根据实际需求调整和优化系统。同时,提供相关的问题链接,引导用户进一步探索可能遇到的挑战。</think>以下是基于Python实现排课系统的**分步骤详细实现指南**,涵盖核心模块开发、约束处理、算法整合和前后端交互: --- ### **一、数据模型设计(核心基础)** #### 1. **实体定义(Python类)** ```python class Classroom: def __init__(self, id, capacity, equipment): self.id = id # 教室编号 self.capacity = capacity # 容量 self.equipment = equipment # 设备列表(如投影仪、实验室设备) class Teacher: def __init__(self, id, name, unavailable_times): self.id = id self.name = name self.unavailable_times = unavailable_times # 不可用时间段集合,如 {(&#39;Mon&#39;, 1), (&#39;Wed&#39;, 3)} class Course: def __init__(self, code, name, required_equipment, teacher_id, duration_weeks): self.code = code # 课程编号 self.name = name self.required_equipment = required_equipment # 依赖的设备类型 self.teacher_id = teacher_id # 授课教师ID self.duration_weeks = duration_weeks # 持续周数(如固定周或循环周) class StudentGroup: def __init__(self, id, size, required_courses): self.id = id self.size = size # 学生人数 self.required_courses = required_courses # 必须安排的课程列表 ``` #### 2. **数据库表设计(以SQL为例)** ```sql CREATE TABLE classrooms ( id INT PRIMARY KEY, capacity INT, equipment JSON -- 存储设备列表,如 ["projector", "lab_equipment"] ); CREATE TABLE teachers ( id INT PRIMARY KEY, name VARCHAR(50), unavailable_times JSON -- 存储不可用时间段,如 [["Mon", 1], ["Wed", 3]] ); -- 其他实体类似设计,需包含外键关联 ``` --- ### **二、约束处理(核心难点)** #### 1. **硬性约束(必须满足)** - **代码示例(使用`python-constraint`库)**: ```python from constraint import Problem problem = Problem() # 定义变量:每门课的时间段和教室 for course in courses: problem.addVariable(f"time_{course.code}", possible_times) problem.addVariable(f"room_{course.code}", classroom_ids) # 添加约束:教师时间冲突 def teacher_conflict(course1_time, course2_time): if course1.teacher_id == course2.teacher_id: return course1_time != course2_time return True problem.addConstraint(teacher_conflict, ["time_math101", "time_phys201"]) # 类似添加教室容量、设备匹配等约束... ``` #### 2. **软性约束(优化目标)** - **遗传算法中的适应度函数设计**: ```python def fitness(schedule): score = 0 # 计算连续课程惩罚 for group in student_groups: if has_consecutive_same_course(group): score -= 10 # 计算教师偏好满足度 for teacher in teachers: if schedule.time in teacher.preferred_times: score += 5 return score ``` --- ### **三、算法实现(以遗传算法为例)** #### 1. **染色体编码** - 每个基因表示一门课程的安排:`{course_code: (time_slot, classroom_id)}` - **示例个体**: ```python { "math101": ("Mon_1", "room_301"), "phys201": ("Wed_3", "lab_202") } ``` #### 2. **关键操作** ```python # 交叉操作(单点交叉) def crossover(parent1, parent2): crossover_point = random.randint(1, len(parent1)-1) child = {**dict(list(parent1.items())[:crossover_point]), **dict(list(parent2.items())[crossover_point:])} return child # 变异操作(随机调整时间/教室) def mutate(individual): course = random.choice(list(individual.keys())) new_time = random.choice(possible_times) individual[course] = (new_time, individual[course][1]) return individual ``` #### 3. **选择策略** - 使用**锦标赛选择**: ```python def tournament_selection(population, tournament_size=3): competitors = random.sample(population, tournament_size) return max(competitors, key=lambda x: x.fitness) ``` --- ### **四、系统整合** #### 1. **后端API(Flask示例)** ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route(&#39;/generate&#39;, methods=[&#39;POST&#39;]) def generate_schedule(): data = request.json # 调用排课算法 result = genetic_algorithm(data[&#39;courses&#39;], data[&#39;constraints&#39;]) return jsonify(result) if __name__ == &#39;__main__&#39;: app.run(host=&#39;0.0.0.0&#39;, port=5000) ``` #### 2. **前端交互(Plotly Dash)** ```python import dash from dash import html, dcc, Input, Output app = dash.Dash(__name__) app.layout = html.Div([ dcc.Upload(id=&#39;upload-data&#39;, children=html.Button(&#39;Upload CSV&#39;)), html.Div(id=&#39;schedule-table&#39;) ]) @app.callback( Output(&#39;schedule-table&#39;, &#39;children&#39;), Input(&#39;upload-data&#39;, &#39;contents&#39;) ) def update_table(contents): # 解析上传数据并生成表格 return generate_html_table(contents) ``` --- ### **五、测试与优化** 1. **单元测试(pytest)**: ```python def test_teacher_conflict(): teacher = Teacher(id=1, unavailable_times=["Mon_1"]) course = Course(..., teacher_id=1) assert check_conflict(course, "Mon_1") == False ``` 2. **性能优化**: - 使用`numba`加速计算密集型代码 - 对数据库查询添加缓存(Redis) - 采用并行计算处理多个班级的排课 --- ### **总结** 1. **开发流程**: ```mermaid graph TD A[数据建模] --> B[约束定义] B --> C[算法实现] C --> D[API开发] D --> E[前端集成] E --> F[测试部署] ``` 2. **关键决策点**: - 选择**约束满足算法**还是**元启发式算法**(根据问题规模) - 确定是否需要实时排课(影响技术选型) - 处理动态调整需求(如临时调课) 建议从**单班级排课**开始验证核心算法,再逐步扩展为多层级复杂系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值