dp计数问题

最长公共子序列与最长公共子串
子序列转移到 i i i 求的就是考虑前 i i i 个所有的子序列,而子串是考虑以第 i i i 个结尾的子串数量,需要把每一个以 i i i 结尾的子串数量都加起来

简单计数dp

D - FG operation
ABC简单计数dp
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define eps 1e-6
using namespace std;
const int maxn = 2e5 + 9;
const int mod = 998244353; 
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;
int a[maxn];
int f[maxn][10];
// f[i][j] 表示处理1-i 这一段 最后剩余 j 的方案数 
void work()
{
	cin >> n;
	for(int i = 1; i <= n; ++i) cin >> a[i];
	f[1][a[1]] = 1;
	for(int i = 2; i <= n; ++i){
		for(int j = 0; j < 10; ++j){
			int k = (j + a[i]) % 10;
			f[i][k] = (f[i][k] + f[i-1][j]) % mod;
			k = (j * a[i]) % 10;
			f[i][k] = (f[i][k] + f[i-1][j]) % mod;
		}
	}
	for(int i = 0; i < 10; ++i)
		cout << f[n][i] << endl;
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

躲藏
题意:
给定一个字符串,找出有多少子序列 c w b c cwbc cwbc
思路:
初始考虑 f [ i ] [ j ] f[i][j] f[i][j] 表示 s s s 串前 i i i 个字符中,匹配了字符串 c w b c cwbc cwbc j j j
那么有转移方程
f [ i ] [ 1 ] = ( f [ i − 1 ] [ 1 ] + ( s [ i ] = = ′ c ′ ) )   %   m o d f [ i ] [ 2 ] = ( f [ i − 1 ] [ 2 ] + ( s [ i ] = = ′ w ′ ) ∗ f [ i − 1 ] [ 1 ] )   %   m o d f [ i ] [ 3 ] = ( f [ i − 1 ] [ 3 ] + ( s [ i ] = = ′ b ′ ) ∗ f [ i − 1 ] [ 2 ] )   %   m o d f [ i ] [ 4 ] = ( f [ i − 1 ] [ 4 ] + ( s [ i ] = = ′ c ′ ) ∗ f [ i − 1 ] [ 3 ] )   %   m o d f[i][1]=(f[i-1][1]+(s[i]=='c')) \ \% \ mod \\ f[i][2]=(f[i-1][2]+(s[i]=='w')*f[i-1][1]) \ \% \ mod \\ f[i][3]=(f[i-1][3]+(s[i]=='b')*f[i-1][2]) \ \% \ mod \\ f[i][4]=(f[i-1][4]+(s[i]=='c')*f[i-1][3]) \ \% \ mod \\ f[i][1]=(f[i1][1]+(s[i]==c)) % modf[i][2]=(f[i1][2]+(s[i]==w)f[i1][1]) % modf[i][3]=(f[i1][3]+(s[i]==b)f[i1][2]) % modf[i][4]=(f[i1][4]+(s[i]==c)f[i1][3]) % mod
但是这样会 M L E MLE MLE,因此需要考虑空间优化
显然转移方程只与前一位有关,考虑滚动数组优化掉第一维
这样转移方程就变成了
f [ 1 ] = ( f [ 1 ] + ( s [ i ] = = ′ c ′ ) ∗ 1 )   %   m o d f [ 2 ] = ( f [ 2 ] + ( s [ i ] = = ′ w ′ ) ∗ f [ 1 ] )   %   m o d f [ 3 ] = ( f [ 3 ] + ( s [ i ] = = ′ b ′ ) ∗ f [ 2 ] )   %   m o d f [ 4 ] = ( f [ 4 ] + ( s [ i ] = = ′ c ′ ) ∗ f [ 3 ] )   %   m o d f[1]=(f[1]+(s[i]=='c')*1) \ \% \ mod \\ f[2]=(f[2]+(s[i]=='w')*f[1])\ \% \ mod \\ f[3]=(f[3]+(s[i]=='b')*f[2])\ \% \ mod \\ f[4]=(f[4]+(s[i]=='c')*f[3])\ \% \ mod \\ f[1]=(f[1]+(s[i]==c)1) % modf[2]=(f[2]+(s[i]==w)f[1]) % modf[3]=(f[3]+(s[i]==b)f[2]) % modf[4]=(f[4]+(s[i]==c)f[3]) % mod
未优化空间:
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define eps 1e-6
using namespace std;
const int maxn = 2e5 + 9;
const ll mod = 2000120420010122;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;
string t = "@cwbc", s;
ll f[maxn][5];

void work()
{
	n = s.size();		
	for(int i = 0; i <= n; ++i)
		f[i][1] = f[i][2] = f[i][3] = f[i][4] = 0, f[i][0] = 1;	
	s = "@" + s;
	for(int i = 1; i <= n; ++i)
	{
		s[i] = tolower(s[i]);
		for(int j = 1; j <= 4; ++j)
			f[i][j] = (f[i-1][j] + (s[i] == t[j]) * f[i-1][j-1]) % mod;
	}
	cout << f[n][4] << endl;
}
int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	while(cin >> s)
	work();
	return 0;
}

code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 2e5 + 9;
const ll mod = 2000120420010122;

ll n, m;
ll f[5];
string s, op = "@cwbc";

void work()
{
	memset(f, 0, sizeof(f));
	n = s.size();
	s = "@" + s;
	ll ans = 0;
	f[0] = 1;
	for(int i = 1; i <= n; ++i)
	{
		s[i] = tolower(s[i]);
		for(int j = 4; j >= 1; --j)
			f[j] = (f[j] + (s[i] == op[j]) * f[j - 1]) % mod;
	}
	cout << f[4] << endl;
}

int main()
{
	ios::sync_with_stdio(0);
	//int TT;cin>>TT;while(TT--)
	while(cin >> s)
	work();
	return 0;
}

Nun Heh Heh Aaaaaaaaaaa
题意:
给定串 s s s,求有多少子序列满足前缀是 n u n h e h h e h nunhehheh nunhehheh,后边至少有一个 a a a
思路:
考虑动态规划
首先我们肯定要用动态规划统计前缀 n u n h e h h e h nunhehheh nunhehheh 的个数,然后知道如果知道它后边有多少个 a a a,那么这次的贡献很好求了,假设有 m m m a a a,我们可以选 1 , 2 , 3 , . . . m 1,2,3,...m 1,2,3,...m 个,也就是 C m 1 + C m 2 + C m 3 + . . . + C m m = 2 m − 1 C_m^1+C_m^2+C_m^3+...+C_m^m=2^m-1 Cm1+Cm2+Cm3+...+Cmm=2m1(减去 C m 0 C_m^0 Cm0
统计前缀的过程与上边那道题目一样,然后我们只需要再统计每个前缀后边有多少个 a a a,就可以求出答案了
注意要减去之前用过的子序列
code:(没有优化空间

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 1e5 + 9;
const int mod = 998244353;
ll n, m;
ll q_pow(ll a, ll n, ll ans = 1){
	while(n){
		if(n & 1) ans=ans*a%mod;a=a*a%mod;n>>=1;
	}return ans;
}
ll f[maxn][15];
string op = "@nunhehheh";
void work()
{
	memset(f, 0, sizeof(f));
	string s;cin >> s;
	n = s.size();
	m = 0;
	s = "@" + s;
	for(int i = 1; i <= n; ++i) if(s[i] == 'a')
		++m;
	ll ans = 0, tmp = 0;
	for(int i = 0; i <= n; ++i) f[i][0] = 1;
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 9; j >= 1; --j)// 因为没有优化空间,遍历方向无所谓
			f[i][j] = (f[i-1][j] + (s[i] == op[j]) * f[i - 1][j - 1]) % mod;
			
		ans = (ans + (f[i][9] - f[i-1][9] + mod) % mod * (q_pow(2, m) - 1 + mod) % mod) % mod;
		if(s[i] == 'a') --m;
	}
	cout << ans << endl;
}

int main()
{
	ios::sync_with_stdio(0);
	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

滚动数组优化空间
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 1e5 + 9;
const int mod = 998244353;
ll n, m;
ll q_pow(ll a, ll n, ll ans = 1){
	while(n){
		if(n & 1) ans=ans*a%mod;a=a*a%mod;n>>=1;
	}return ans;
}
ll f[15];
string op = "@nunhehheh";
void work()
{
	memset(f, 0, sizeof(f));
	string s;cin >> s;
	n = s.size();
	m = 0;
	s = "@" + s;
	for(int i = 1; i <= n; ++i) if(s[i] == 'a')
		++m;
	ll ans = 0, tmp = 0;
	f[0] = 1;
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 9; j >= 1; --j)
			f[j] = (f[j] + (s[i] == op[j]) * f[j - 1]) % mod;
		ans = (ans + (f[9] - tmp + mod) % mod * (q_pow(2, m) - 1 + mod) % mod) % mod;
		tmp = f[9];
		if(s[i] == 'a') --m;
	}
	cout << ans << endl;
}

int main()
{
	ios::sync_with_stdio(0);
	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

E. Divisible by 3
一段区间的权重指的是:区间内所有两个元素的乘积之和
子段是连续的,与子序列不同
两个状态转移的区别就是,子序列要考虑当前位置选与不选,而子段、子串,这一位必选,直接转移
也就是子段不能直接承接上一层状态
一道子序列的计数题目
开始考虑 f [ i ] [ j ] f[i][j] f[i][j] 表示以 i i i 结尾,权重为 j j j 的子段和数量
发现权重无法根据上一层得到,分析权重的变化
每次添加一个 a [ i ] a[i] a[i],那么权重 w [ i ] = w [ i − 1 ] + s u m [ i − 1 ] ∗ a [ i ] w[i]=w[i-1]+sum[i-1]*a[i] w[i]=w[i1]+sum[i1]a[i]
可以发现维护子段和可以很好的推出权重,因此
f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k] 表示以 i i i 为结尾,子段的 w e i g h t weight weight 3 3 3 j j j ,子段和模 3 3 3 k k k 的子段数量。
状态转移方程只与前一位有关,可以滚掉第一维
code:(没有滚掉第一维

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 5e5 + 9;
const int mod = 1e9 + 7;
ll n, m;
ll f[maxn][3][3], a[maxn];
//f[i][j][k]表示以i为结尾,子段的 weight模 3 为 j ,子段和模3为 k 的子段数量。九种状态直接转移即可。
void work()
{
	cin >> n;
	for(int i = 1; i <= n; ++i){
		cin >> a[i]; a[i] %= 3; f[i][0][a[i]]++;
	}
	ll ans = 0;
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 0; j < 3; ++j)
			for(int k = 0; k < 3; ++k)
			{
				ll x = (j + a[i] * k) % 3;
				ll y = (a[i] + k) % 3;
				f[i][x][y] += f[i - 1][j][k];
			}
		for(int k = 0; k < 3; ++k)// 注意子序列与子串的计数区别
			ans += f[i][0][k];
	}
	cout << ans << endl;
}

int main()
{
	ios::sync_with_stdio(0);
	//int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

滚掉第一维,比较难理解,更接近题目的本质,代码来源 d l s dls dls
简化一下其实就是一种计数的方法
类似于

	if(){
		ans += cnt;
		++cnt;
	}

code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 5e5 + 9;
const int mod = 1e9 + 7;
ll n, m;
ll cnt[3][3], a[maxn];
//cnt[j][k]子段的 子段和模3 为 j, weight模 3 为 k 的子段数量
void work()
{
	cin >> n;
	for(int i = 1; i <= n; ++i){
		cin >> a[i]; a[i] %= 3;
	}
	cnt[0][0] = 1;
	ll ans = 0, x = 0, y = 0;
	for(int i = 1; i <= n; ++i)
	{
		x = (x + a[i]) % 3;// 子段和 
		y = (y + a[i] * a[i]) % 3; // 子段平方和 
		for(int j = 0; j < 3; ++j)
			for(int k = 0; k < 3; ++k)
			{
				ll tmp = (x - j) * (x - j) - (y - k);// 子段
				if(tmp % 3 == 0) ans += cnt[j][k];
			}
		cnt[x][y]++;
	}
	cout << ans << endl;
}

int main()
{
	ios::sync_with_stdio(0);
	//int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

子序列个数-FZU - 2129(已炸
题解
先考虑没有相同整数的情况,每个元素有选或不选两种情况,一共 n n n 个元素,又不能有空集,答案为 2 n − 1 2n−1 2n1
如果要写递推方程的话就是 d p [ i ] = d p [ i − 1 ] ∗ 2 + 1 dp[i]=dp[i−1]∗2+1 dp[i]=dp[i1]2+1,其中 d p [ i ] dp[i] dp[i] 表示考虑前 i i i 个元素所能构成的不同子序列数量, d p dp dp 方程含义为:在长度为 i − 1 i−1 i1 的序列中是否加入一个 a [ i ] a[i] a[i] 以及只选 a [ i ] a[i] a[i] 的情况 。
假设就按照这个方程推下去,如果前面某一位 j j j上的数与 a [ i ] a[i] a[i] 相同,会对 d p [ i ] dp[i] dp[i] 造成什么影响呢?
首先,只选 a [ i ] a[i] a[i] 这一个数的情况已经在前面统计过了,然后 j j j 前面的所有方案都不能转移到 d p [ i ] dp[i] dp[i] 上面来,因为它们已经转移到 d p [ j ] dp[j] dp[j] 上。
这里的 “ 所有方案 ” 其实就是 d p [ j − 1 ] dp[j−1] dp[j1],且 j j j 必须为最接近 i i i 的那一个位置,否则就不能代表所有被算重复的情况。
d p [ i ] = d p [ i − 1 ] ∗ 2 + 1 , l a s t [ a [ i ] ] = 0 d p [ i ] = d p [ i − 1 ] ∗ 2 − d p [ l a s t [ a [ i ] ] − 1 ] , l a s t [ a [ i ] ]   ! = 0   ( 前 边 出 现 过 这 个 数 , 因 此 不 需 要 方 案 + 1 , 然 后 总 方 案 数 减 去 重 复 的 方 案 数 ) 注 意 每 次 减 掉 的 方 案 数 必 须 是 左 边 离   i   最 近 的 dp[i]=dp[i-1]*2+1,last[a[i]]=0 \\ dp[i]=dp[i-1]*2 - dp[last[a[i]]-1],last[a[i]] \ !=0 \ (前边出现过这个数,因此不需要方案+1,然后总方案数减去重复的方案数)\\ 注意每次减掉的方案数必须是左边离 \ i \ 最近的 dp[i]=dp[i1]2+1last[a[i]]=0dp[i]=dp[i1]2dp[last[a[i]]1]last[a[i]] !=0 (+1) i 

code:

#include<cstdio>
#include<iostream>
#include<string>
#include<algorithm>
#include<cstring>
#define endl '\n'
using namespace std;
typedef long long ll;
const ll mod = 1000000007;
const int Max = (int)1e6 + 9;
ll a[Max], dp[Max], last[Max];
int n, t, x;
void work()
{
	memset(last, 0, sizeof(last));
    for(int i = 1; i <= n; i++)
    {
    	scanf("%d", &x);
    	
    	dp[i] = (dp[i-1] << 1) % mod;// 先乘个2
    	
    	if(!last[x]) // 之前没有出现过这个数字
    		{
    			last[x] = i;// 标记下
    			dp[i]++;// 单个该数字算一个
    		}
    	else 
    	{
    		dp[i] = (dp[i] - dp[last[x] - 1] + mod) % mod;// 结合前边的分析
    		last[x] = i;//  更新上一个重复的数字的下标
    	}
	}
	cout << dp[n] % mod << endl;
}
int main()
{
    while(~scanf("%d", &n)) work();
    return 0;
}

P2516 [HAOI2010]最长公共子序列
题意:
求最长公共子序列,以及最长公共子序列的个数
思路:
看大佬题解
滚动数组优化
f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] ) f[i][j]=max(f[i-1][j],f[i][j-1]) f[i][j]=max(f[i1][j],f[i][j1]) 可知
c n t [ i ] [ j ] cnt[i][j] cnt[i][j] 可以由 c n t [ i − 1 ] [ j ]   o r   c n t [ i ] [ j − 1 ] cnt[i-1][j] \ or \ cnt[i][j-1] cnt[i1][j] or cnt[i][j1] 转移过来
如果存在一个情况, c n t [ i − 1 ] [ j − 1 ] cnt[i-1][j-1] cnt[i1][j1] 转移到了 c n t [ i − 1 ] j ] cnt[i-1]j] cnt[i1]j] c n t [ i ] [ j − 1 ] cnt[i][j-1] cnt[i][j1] 上,并且 c n t [ i − 1 ] j ] cnt[i-1]j] cnt[i1]j] c n t [ i ] [ j − 1 ] cnt[i][j-1] cnt[i][j1] 也同时转移到了 c n t [ i ] [ j ] cnt[i][j] cnt[i][j] 上,那么就发生了重复计数
显然这种情况仅会在 c n t [ i ] [ j ] = c n t [ i − 1 ] [ j − 1 ] cnt[i][j]=cnt[i-1][j-1] cnt[i][j]=cnt[i1][j1] 时出现
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 5e3 + 9;
const int mod = 1e8;
ll n, m;
string s, t;
int f[2][maxn], cnt[2][maxn];

void work()
{
	cin >> s >> t;
	n = s.size() - 1, m = t.size() - 1;
	s =	"@" + s; t = "@" + t;
	cnt[1][0] = 1;
	for(int i = 0; i <= m; ++i) cnt[0][i] = 1;
	for(int i = 1; i <= n; ++i)
	{
		int op = i % 2;
		for(int j = 1; j <= m; ++j)
		{
			cnt[op][j] = 0;// 滚动数组注意初始化 
			if(s[i] == t[j]) 
				f[op][j] = f[op^1][j-1] + 1, cnt[op][j] = cnt[op^1][j-1];
			else 
				f[op][j] = max(f[op^1][j], f[op][j-1]);
			if(f[op][j] == f[op^1][j])
				cnt[op][j] += cnt[op^1][j], cnt[op][j] %= mod;
			if(f[op][j] == f[op][j-1])
				cnt[op][j] += cnt[op][j-1], cnt[op][j] %= mod;
			if(f[op][j] == f[op^1][j-1])// 发生重复计数 
				cnt[op][j] = (cnt[op][j] - cnt[op^1][j-1] + mod) % mod;
		}
	}
	cout << f[n%2][m] << endl << cnt[n%2][m];
}

int main()
{
	ios::sync_with_stdio(0);
	//int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

北京化工大学周赛
题意:
给定一个字符串,每个字符为 0 − 9 0-9 09 或者 ? ? ?,把 ? ? ? 0 − 9 0-9 09 的数字代替,对于所有通过这种方式得到的数,有多少个数除以 13 13 13 余数是 5 5 5
答案对 1 0 9 + 7 10^9+7 109+7 取模。
思路:
f [ i ] [ j ] f[i][j] f[i][j] 表示考虑前 i i i 个字符,除以 13 13 13 j j j 的方案数
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define eps 1e-6
using namespace std;
const int maxn = 1e5 + 9;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;
ll f[maxn][15];
void work()
{
    string s;cin >> s;
    n = s.size();
    s = "#" + s;
    f[0][0] = 1;
    for(int i = 1; i <= n; ++i)
    {
        for(int j = 0; j < 13; ++j)
        {
            if(s[i] == '?')
            {
                for(int k = 0; k < 10; ++k){
                    int p = (k + j * 10) % 13;
                    f[i][p] = (f[i-1][j] + f[i][p]) % mod;
                }
            }
            else{
                int k = (j * 10 + s[i] - '0') % 13;
                f[i][k] = (f[i][k] + f[i-1][j]) % mod;
            }
        }
    }
    cout << f[n][5];
}
 
int main()
{
    ios::sync_with_stdio(0);
//  int TT;cin>>TT;while(TT--)
    work();
    return 0;
}

满意的集合–牛客小白月赛43
题意:
给定 1 − 9 1-9 19 9 9 9 个数字每个数字的个数 c n t i cnt_i cnti,从中选出一些数组成可重集合,如果这些数可以拼接成 3 3 3 的倍数,那么这个集合被称作满意集合,空集也是满意集合;两个集合相同,当且仅当集合元素个数相同,且排序后对应数字相同。求满意集合数量,答案对 1 0 9 + 7 10^9+7 109+7 取模
思路:
考虑 f [ i ] [ j ] f[i][j] f[i][j] 表示从 1 − i 1-i 1i 中选数,拼接数 % 3 \%3 %3 j j j 的方案数

    f[0][0] = 1;
    for(int i = 1; i <= n; ++i){
        for(int j = 0; j <= a[i]; ++j){// 直接去枚举选择i的数量,显然会T
            for(int k = 0; k < 3; ++k){
                int d = (j * i + k) % 3;
                f[i][d] = (f[i][d] + f[i-1][k]) % mod;
            }
        }
    }

找规律可以发现,如果一个数选择 1 , 4 , 7...3 k + 1 1,4,7...3k+1 1,4,7...3k+1 次,他们对应的集合拼接出的数对 3 3 3 取模是等价的
同理,如果选择 0 , 3 , 6 , . . . 3 k 0,3,6,...3k 0,3,6,...3k 次 和 2 , 5 , 8...3 k + 2 2,5,8...3k+2 2,5,8...3k+2
因此选择的数次数种类只有三种即 0 , 1 , 2 0,1,2 0,1,2
这样就可以把 c n t i cnt_i cnti 分解为三个数相加,也就是 % 3 = 0 , 1 , 2 \%3 = 0,1,2 %3=0,1,2 的三种数
由于可以选 0 0 0 个,因此 n u m 3 num3 num3 需要加 1 1 1
1 ∗ i % 3 1*i\%3 1i%3 贡献 n u m 1 num1 num1
2 ∗ i % 3 2*i\%3 2i%3 贡献 n u m 2 num2 num2
3 ∗ i % 3 3*i\%3 3i%3 贡献 n u m 3 num3 num3
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define eps 1e-6
using namespace std;
const int maxn = 10 + 9;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;
ll cnt[maxn];
ll f[maxn][3];

void work()
{
	n = 9;
	for(int i = 1; i <= n; ++i) cin >> cnt[i];
	f[0][0] = 1;
	for(int i = 1; i <= n; ++i){
		ll x = i % 3, y = i * 2 % 3, z = i * 3 % 3;
		ll num1 = cnt[i] / 3 + (cnt[i] % 3 >= 1);
		ll num2 = cnt[i] / 3 + (cnt[i] % 3 >= 2);
		ll num3 = cnt[i] / 3 + 1;
			for(int k = 0; k < 3; ++k){
				int d = (x + k) % 3;
				f[i][d] = (f[i][d] + num1 * f[i-1][k]) % mod;
				d = (y + k) % 3;
				f[i][d] = (f[i][d] + num2 * f[i-1][k]) % mod;
				d = (z + k) % 3;
				f[i][d] = (f[i][d] + num3 * f[i-1][k]) % mod;
			}
		
	}
	cout << f[n][0];
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

虽然思路和上边的差不多,但是这个写法看起来很简洁,但是不知道得到 num 的原理是啥

	for(int i = 1; i <= n; ++i){
		for(int j = 0; j < 3; ++j){
			int num = (cnt[i] - j + 3) / 3;
			for(int k = 0; k < 3; ++k){
				int d = (j * i + k) % 3;
				f[i][d] = (f[i][d] + num * f[i-1][k]) % mod;
			}
		}
	}

月之暗面
思路:
直接树形 dp,记录当根节点颜色假如已经被确定时的两种方案对应方案数即可。
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define mem(x, d) memset(x, d, sizeof(x))
#define eps 1e-6
using namespace std;
const int maxn = 1e6 + 9;
const int mod = 998244353;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;
ll a, b;
vector <int> e[maxn];
ll f[maxn][2];// 0普通颜色,1特殊颜色

void dfs(int x, int fa){
	f[x][0] = f[x][1] = 1;// 假设x节点的颜色是确定的
	for(int to : e[x]) if(to != fa)
	{
		dfs(to, x);// 转移是给 to 涂颜色
		f[x][0] = f[x][0] * ((f[to][0] * a % mod + f[to][1] * b % mod) % mod) % mod;
		f[x][1] = f[x][1] * ((f[to][0] * a % mod + f[to][1] * (b - 1) % mod) % mod) % mod;
	}	
}
void work()
{
	cin >> n >> a >> b;
	for(int i = 1; i < n; ++i){
		int x, y;cin >> x >> y;	e[x].push_back(y);e[y].push_back(x);
	}
	dfs(1, -1);
	cout << (f[1][0] * a % mod + f[1][1] * b % mod) % mod;
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

另外一种思路的 d p dp dp 公式
x x x 为当且节点, t o to to 为子节点
普通颜色: f [ x ] [ 0 ] = f [ x ] [ 0 ] ∗ ( f [ t o ] [ 0 ] + f [ t o ] [ 1 ] ) f[x][0] = f[x][0] * (f[to][0]+f[to][1]) f[x][0]=f[x][0](f[to][0]+f[to][1]),这部分没什么好说的
考虑特殊颜色
如果子节点是普通颜色就加上即可
子节点为某种特殊颜色,我们给 x x x 确定为某种颜色,那么 t o to to 就可以选剩下的 y − 1 y-1 y1 种,而这些特殊颜色都是等价的,所以总的合法方案的比例也是 y − 1 y \frac{y-1}{y} yy1,因此增加的合法的方案数即为 f [ t o ] [ 1 ] ∗ y − 1 y f[to][1]*\frac{y-1}{y} f[to][1]yy1
看到这个合法方案数的占比就想到了这道题
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define mem(x, d) memset(x, d, sizeof(x))
#define eps 1e-6
using namespace std;
const int maxn = 1e6 + 9;
const int mod = 998244353;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;
ll a, b, ib;
vector <int> e[maxn];
ll f[maxn][2];

ll q_pow(ll a, ll b){
	ll ans = 1;while(b){
		if(b & 1) ans = ans * a % mod;b >>= 1; a = a * a % mod;
	}return ans;
}
void dfs(int x, int fa){
	f[x][0] = a;f[x][1] = b;
	for(auto to : e[x]){
		if(to == fa) continue;
		dfs(to, x);
		(f[x][0] *= (f[to][0] + f[to][1]) % mod) %= mod;
		(f[x][1] *= (f[to][0] + f[to][1] * ib % mod * (b - 1) % mod) % mod) %= mod;
	}
}
void work()
{
	cin >> n >> a >> b;
	for(int i = 1; i < n; ++i){
		int x, y;cin >> x >> y;
		e[y].push_back(x);e[x].push_back(y);
	}
	ib = q_pow(b, mod - 2);
	dfs(1, -1);
	cout << (f[1][0] + f[1][1]) % mod;
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值