解释 Neural Network 的 Output 公式

下面这道公式, 出自于Making Your Own Neural Network这本书。 是在讲3 Layer Neural Network, 第三层其中一个Node的Output值。 


刚开始看, 觉得难懂,后来,想通了。 其实, 很简单。我们以程序员的角度, 来想这个问题。 什么是程序员的角度?就是把复杂度问题拆为几个简单的小问题。 拿一个Neural Node为例子。 Node会有几个Input和几个Output。假设只有一个Input和一个Output。如下图:


对这个Input, 先乘上Weight, W,然后进行Sigmoid运算, 得到Output。 S为Sigmoid运算, 如下:


接下来,我们把3个Node, 接在一起, 成为3 Layer Neural Network, 但只有一条线串在一起。


因为第一層Node, 不其作用, Output = Input。第二層, 第三層, 会作Weight和Sigmoid运算。 合并起来, 就是下面这道公式。 

O = S (W3 * S (W2 * I))


把S展开来, 就是本篇一开始的那道公式。 


-Count 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值