《The Graph Neural Network Model 》

A b s t r a c t Abstract Abstract

  • 这篇论文是第一个提出Graph Neural Network模型的论文,它将神经网络使用在图结构数据上,并细述了神经网络模型了结构组成计算方法优化算法流程实现等等。
  • GNN模型通过一个函数 τ ( G , n ) ∈ R m τ(G,n) \in \mathbb{R}^m τ(G,n)Rm 将图 G G G和其中的一个顶点 n n n映射到一个 m m m维欧式空间,可以直接处理众多实用类型的图,例如无环图,循环图,有向图和无向图
  • 论文后面还对模型的复杂度进行了评估,以及在现实任务上进行了实验和比较(比较算法为 N L 、 L 、 F N N NL、L、FNN NLLFNN)。该报告暂时主要关注模型设计部分和实验结果部分,忽略复杂性评估部分。

I n t r o d u c t i o n Introduction Introduction

  • 图领域的应用主要可以分为两种类型:专注于图的应用(graph-focused)和专注于节点的应用(node-focused)。对于graph-focused的应用,函数 τ τ τ 和具体的节点无关,(即​ τ ( G ) τ(G) τ(G) ),训练时,在一个图的数据集中进行分类或回归。对于node-focused的应用,​ τ τ τ 函数依赖于具体的节点 n n n​,即 τ ( G , n ) τ(G,n) τ(G,n)
    在这里插入图片描述
  • 传统的机器学习应用,在于处理阶段将图结构信息映射为简单的表示,比如实向量,即将图结构数据进行压缩,然后使用 l i s t − b a s e d list-based listbased技术处理被压缩的数据。因此,一些重要的信息可能会丢失,例如节点间的拓扑信息依赖。
  • 本文提出监督类型的神经网络模型,图神经网络 ( G N N ) (GNN) (GNN),适用于面向图和顶点的应用方向。
  • G N N GNN GNN递归神经网络 r e c u r s i v e   n e u r a l   n e t w o r k s recursive\ neural\ networks recursive neural networks随机游走模型 r a n d o m   w a l k   m o d e l s random\ walk\ models random walk models的扩展,并且保留了它们的特征。
  • G N N s GNNs GNNs 基于信息扩散机制 i n f o r m a t i o n   d i f f u s i o n   m e c h a n i s m information\ diffusion\ mechanism information diffusion mechanism。对于给定的图通过一组 u n i t unit unit进行处理,每个 u n i t unit unit和图的一个顶点对应。这些 u n i t unit unit相互间进行信息交互并更新各自的状态直到一个稳定状态。根据每个 u n i t unit unit的状态, G N N GNN GNN完成最后的输出。同时,引进了相应的学习算法,用来对 G N N GNN GNN中的参数进行估计

T h e   G r a p h   N e u r a l   N e t w o r k   M o d e l The\ Graph\ Neural\ Network\ Model The Graph Neural Network Model

符号

G N N GNN GNN模型基于信息传播机制,每一个节点通过相互交换信息来更新自己的节点状态,直到达到某一个稳定值, G N N GNN GNN的输出就是在每个节点处,根据当前节点状态分别计算输出。有如下定义:

  • G = ( N , E ) G=(N,E) G=(N,E),其中 N N N 表示顶点集, E E E 边集合
  • n e [ n ] ne[n] ne[n] 表示顶点 n n n的邻接顶点
  • c o [ n ] co[n] co[n] 关联顶点 n n n 的边
  • l n ∈ R l N l_n \in \mathbb{R}^{l_N} lnRlN表示节点 n n n​的特征向量
  • l ( n 1 , n 2 ) ∈ R l E l_ (n_1,n_2) \in\mathbb{R}^{l_E} l(n1,n2)RlE表示边 ( n 1 , n 2 ) (n_1,n_2) (n1,n2)的特征向量
  • l l l表示将图中所有的属性堆积构成的张量

论文将图分为 p o s i t i o n a l   g r a p h positional\ graph positional graph n o n p o s i t i o n a l   g r a p h nonpositional\ graph nonpositional graph,对于 p o s i t i o n a l   g r a p h positional\ graph positional graph,对于每一个节点 n n n ​,都会给该节点的邻居节点​ u u

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值