《The Graph Neural Network Model 》

A b s t r a c t Abstract Abstract

  • 这篇论文是第一个提出Graph Neural Network模型的论文,它将神经网络使用在图结构数据上,并细述了神经网络模型了结构组成计算方法优化算法流程实现等等。
  • GNN模型通过一个函数 τ ( G , n ) ∈ R m τ(G,n) \in \mathbb{R}^m τ(G,n)Rm 将图 G G G和其中的一个顶点 n n n映射到一个 m m m维欧式空间,可以直接处理众多实用类型的图,例如无环图,循环图,有向图和无向图
  • 论文后面还对模型的复杂度进行了评估,以及在现实任务上进行了实验和比较(比较算法为 N L 、 L 、 F N N NL、L、FNN NLLFNN)。该报告暂时主要关注模型设计部分和实验结果部分,忽略复杂性评估部分。

I n t r o d u c t i o n Introduction Introduction

  • 图领域的应用主要可以分为两种类型:专注于图的应用(graph-focused)和专注于节点的应用(node-focused)。对于graph-focused的应用,函数 τ τ τ 和具体的节点无关,(即​ τ ( G ) τ(G) τ(G) ),训练时,在一个图的数据集中进行分类或回归。对于node-focused的应用,​ τ τ τ 函数依赖于具体的节点 n n n​,即 τ ( G , n ) τ(G,n) τ(G,n)
    在这里插入图片描述
  • 传统的机器学习应用,在于处理阶段将图结构信息映射为简单的表示,比如实向量,即将图结构数据进行压缩,然后使用 l i s t − b a s e d list-based listbased技术处理被压缩的数据。因此,一些重要的信息可能会丢失,例如节点间的拓扑信息依赖。
  • 本文提出监督类型的神经网络模型,图神经网络 ( G N N ) (GNN) (GNN),适用于面向图和顶点的应用方向。
  • G N N GNN GNN递归神经网络 r e c u r s i v e   n e u r a l   n e t w o r k s recursive\ neural\ networks recursive neural networks随机游走模型 r a n d o m   w a l k   m o d e l s random\ walk\ models random walk models的扩展,并且保留了它们的特征。
  • G N N s GNNs GNNs 基于信息扩散机制 i n f o r m a t i o n   d i f f u s i o n   m e c h a n i s m information\ diffusion\ mechanism information diffusion mechanism。对于给定的图通过一组 u n i t unit unit进行处理,每个 u n i t unit unit和图的一个顶点对应。这些 u n i t unit unit相互间进行信息交互并更新各自的状态直到一个稳定状态。根据每个 u n i t unit unit的状态, G N N GNN GNN完成最后的输出。同时,引进了相应的学习算法,用来对 G N N GNN GNN中的参数进行估计

T h e   G r a p h   N e u r a l   N e t w o r k   M o d e l The\ Graph\ Neural\ Network\ Model The Graph Neural Network Model

符号

G N N GNN GNN模型基于信息传播机制,每一个节点通过相互交换信息来更新自己的节点状态,直到达到某一个稳定值, G N N GNN GNN的输出就是在每个节点处,根据当前节点状态分别计算输出。有如下定义:

  • G = ( N , E ) G=(N,E) G=(N,E),其中 N N N 表示顶点集, E E E 边集合
  • n e [ n ] ne[n] ne[n] 表示顶点 n n n的邻接顶点
  • c o [ n ] co[n] co[n] 关联顶点 n n n 的边
  • l n ∈ R l N l_n \in \mathbb{R}^{l_N} lnRlN表示节点 n n
  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 图神经网络模型(Graph Neural Network Model)是一种基于图结构的深度学习模型,用于处理图数据。它可以对节点和边进行特征提取和表示学习,从而实现对图数据的分类、聚类、预测等任务。该模型在社交网络、化学分子结构、推荐系统等领域有广泛应用。 ### 回答2: 图神经网络Graph Neural Network Model,GNN)是一种新兴的人工智能技术,主要应用于图像、文本、语音等非结构化数据的分析和处理。与传统的神经网络相比,GNN不仅可以处理标量和向量数据,还可以有效地处理图结构数据。该算法已经被广泛应用于社交网络和推荐系统等领域。 GNN的核心思想是将图结构数据转化为节点特征向量。在传统的神经网络计算中,每个节点都有自己的参数和输入,GNN则不同,它通过传递和聚集节点之间的信息来学习高维特征数据。这种信息传递和聚集的过程可以通过使用邻接矩阵和节点度等数学工具来实现。 GNN的训练过程可以使用反向传播算法完成,与常规神经网络的训练过程类似。在应用于图像数据分类问题时,GNN可以通过多个学习层来提高准确性。这个技术的成功还在于GNN可以对图像的部分进行处理,而不是整个图像,从而提高了训练和测试的效率。 GNN技术的优势在于,它可以处理复杂的非线性数据,而且可以基于节点、边缘、子图等多种粒度进行分析。此外,GNN还可以处理不明确的、不完整的或噪声丰富的数据。例如,它可以在社交网络中预测用户的兴趣,或在进化发育生物学中预测蛋白质之间的交互。 总之,GNN是一种具有广泛应用前景的新型人工智能技术,其可以更好地解决图像分类、社交网络分析、蛋白质预测等问题。它将成为未来智能分析和推荐系统的重要组成部分。 ### 回答3: 图神经网络Graph Neural Network,GNN)是一种用于解决结构化数据(例如图、网格等)的机器学习模型。它是神经网络的一种扩展,能够利用节点和边之间的关系信息进行学习。与传统的神经网络不同的是,图神经网络是针对图等结构化数据的设计。 图神经网络的核心思想是将节点和边的表示融合起来,实现对图结构的整体建模。通过将节点和边的特征进行编码,可以学习到可以表达节点和边之间关系的空间嵌入向量。在这些向量的基础上,可以进行下一层节点和边的编码,并通过多层的神经网络来逐渐提高对图结构的建模能力。 目前,图神经网络在多个领域得到了广泛应用,例如化学分子分析、社交网络分析、3D建模等。在化学领域,图神经网络可以从化学分子的结构中预测化学性质,如溶解度、反应性等。在社交网络分析中,它可以对用户关系进行建模,并预测社交网络中用户的行为。在3D建模中,图神经网络可以对点云数据进行建模,并生成复杂的三维物体。 总之,图神经网络是一种适用于结构化数据的机器学习模型,可以从节点和边特征中学习到图结构中的信息并进行整体建模。它在各种领域得到了广泛应用,为研究者提供了一种有效的工具来分析和处理结构化数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值