10_评价分类结果(Evaluate classification)

第10章 评价分类结果

对机器学习分类算法结果的评估,是一个公认的复杂问题。在这一章,我们将来阐述这个问题为什么复杂。
我们如何更好地看待我们的机器学习算法给出的结果。学习诸如混淆矩阵,准确率,精确率,召回率,F1,以及ROC等诸多评价分类结果的指标。
通过这一章的学习,大家将更好地理解自己的机器学习算法给出的结果,从而在实际应用…

10-1 准确度的陷阱和混淆矩阵

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

10-2 精准率和召回率

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

10-3 实现混淆矩阵,精准率和召回率

在这里插入图片描述

10-4 F1 Score

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

10-5 精准率和召回率的平衡

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

10-7 ROC曲线

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

10-8 多分类问题中的混淆矩阵

可以用热力图可视化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值