第10章 评价分类结果 对机器学习分类算法结果的评估,是一个公认的复杂问题。在这一章,我们将来阐述这个问题为什么复杂。 我们如何更好地看待我们的机器学习算法给出的结果。学习诸如混淆矩阵,准确率,精确率,召回率,F1,以及ROC等诸多评价分类结果的指标。 通过这一章的学习,大家将更好地理解自己的机器学习算法给出的结果,从而在实际应用… 10-1 准确度的陷阱和混淆矩阵 10-2 精准率和召回率 10-3 实现混淆矩阵,精准率和召回率 10-4 F1 Score 10-5 精准率和召回率的平衡 10-7 ROC曲线 10-8 多分类问题中的混淆矩阵 可以用热力图可视化