关于图像拼接的过程,涉及到特征点的提取、特征点匹配、图像融合等等比较复杂的过程,可以参考相关论文和期刊。
幸运的是,在opencv2.4.0以上的版本中提供了stitcher类,可以很方便的实现几幅图像的拼接,经过我是试验,可以实现水平、垂直和倾斜拍摄的图片的拼接,根据图片的大小和特征相关程度,该算法需要执行较长时间,所以测试过程中请耐心等待,关于这个类详细的介绍,可以参考OpenCV的相关文档。
该类主要用的成员函数有:
createDefault,用于创建缺省参数的stitcher;
estimatedTransform,用于匹配图像、分析摄像头旋转角度;
composePanorama,生成最后的拼接图像。
下面将直接直接使用stitch完成图像拼接。
PS:在安装文件下,提供了图像拼接的例子:opencv\samples\cpp\stitching.cpp
下面是我自己根据自身需求对源代码的一些改写,实现了在预定文件夹下提取图片文件并完成拼接的功能(Unicode):
#include "stdafx.h"
#include <windows.h>
#include <iostream>
#include <fstream>
#include "opencv.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/stitcher.hpp"
using namespace std;
using namespace cv;
bool try_use_gpu = false;
vector<Mat> imgs;
char result_name[] = "pic//result.jpg";
std::string WcsToMbs( const std::wstring& wcs )
{
int lengthOfMbs = WideCharToMultiByte( CP_ACP, 0, wcs.c_str(), -1, NULL, 0, NULL, NULL);
char* mbs = new char[ lengthOfMbs ];
WideCharToMultiByte( CP_ACP, 0, wcs.c_str(), -1, mbs, lengthOfMbs, NULL, NULL);
std::string result = mbs;
delete mbs;
mbs = NULL;
return result;
}
BOOL FindPic(WCHAR *szDir)
{
WCHAR directory[MAX_PATH];
WCHAR file[MAX_PATH];
HANDLE hFile;
WIN32_FIND_DATA fd;
memset( &fd, 0, sizeof(WIN32_FIND_DATA) );
wcsncpy_s(directory, szDir, MAX_PATH);//char*strncpy(char*dest,char*src,size_tn);复制字符串src中的内容到字符串dest中,复制多少由size_t的值决定
wcscat_s(directory,_T("*.*"));//char *strcat(char *dest,char *src);把src所指字符串添加到dest结尾处(覆盖dest结尾处的'\0')并添加'\0'
hFile = FindFirstFile(directory, &fd);
do
{
if( fd.cFileName[0] != '.' )
{
if( fd.dwFileAttributes != FILE_ATTRIBUTE_DIRECTORY)
{
memset(file, 0, MAX_PATH);
wcscpy_s(file, szDir);
wcscat_s(file, fd.cFileName );
wcout<<file<<endl;
Mat img;
img = imread(WcsToMbs(file));
if (img.empty())
{
cout<<"Could not open or find the image!"<<endl;
return FALSE;
}
//imshow("图像", img);
imgs.push_back(img);
}
}
}while( FindNextFile( hFile, &fd) );
return TRUE;
}
void ResizeImage()
{
double fScale = 0.214; //缩放倍数
CvSize czSize; //目标图像尺寸
IplImage *pSrcImage = cvLoadImage(result_name, CV_LOAD_IMAGE_UNCHANGED);
IplImage *pDstImage = NULL;
//计算目标图像大小
czSize.width = cvRound(pSrcImage->width * fScale);
czSize.height = cvRound(pSrcImage->height * fScale);
if (czSize.width<600||czSize.height<500)
{
czSize.width=600;
czSize.height=500;
}
//创建图像并缩放
pDstImage = cvCreateImage(czSize, pSrcImage->depth, pSrcImage->nChannels);
cvResize(pSrcImage, pDstImage, CV_INTER_AREA);
//在指定窗口中显示图像
cvShowImage("result_resize", pDstImage);
//保存图片
cvSaveImage("pic//result_resize.jpg", pDstImage);
}
int main(int argc, char* argv[])
{
FindPic(_T("pic//"));
// 调用createDefault函数生成默认的参数
Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
// 使用stitch函数进行拼接
Mat pano;
Stitcher::Status status = stitcher.stitch(imgs, pano);
// 保存结果图像
imwrite(result_name, pano);
// 显示结果图像
imshow("全景图像", pano);
ResizeImage();
waitKey(0);
return 0;
}
/*
//多字节字符串与宽字符串的转换
std::string WcsToMbs( const std::wstring& wcs )
{
int lengthOfMbs = WideCharToMultiByte( CP_ACP, 0, wcs.c_str(), -1, NULL, 0, NULL, NULL);
char* mbs = new char[ lengthOfMbs ];
WideCharToMultiByte( CP_ACP, 0, wcs.c_str(), -1, mbs, lengthOfMbs, NULL, NULL);
std::string result = mbs;
delete mbs;
mbs = NULL;
return result;
}
std::wstring MbsToWcs( const std::string& mbs )
{
int lengthOfWcs = MultiByteToWideChar( CP_ACP, 0, mbs.c_str(), -1, NULL, 0 );
wchar_t* wcs = new wchar_t[ lengthOfWcs ];
MultiByteToWideChar( CP_ACP, 0, mbs.c_str(), -1, wcs, lengthOfWcs );
std::wstring result = wcs;
delete wcs;
wcs = NULL;
return result;
}
*/