OpenCV图像拼接

关于图像拼接的过程,涉及到特征点的提取、特征点匹配、图像融合等等比较复杂的过程,可以参考相关论文和期刊。

幸运的是,在opencv2.4.0以上的版本中提供了stitcher类,可以很方便的实现几幅图像的拼接,经过我是试验,可以实现水平、垂直和倾斜拍摄的图片的拼接,根据图片的大小和特征相关程度,该算法需要执行较长时间,所以测试过程中请耐心等待,关于这个类详细的介绍,可以参考OpenCV的相关文档。

该类主要用的成员函数有:

createDefault,用于创建缺省参数的stitcher;

estimatedTransform,用于匹配图像、分析摄像头旋转角度;

composePanorama,生成最后的拼接图像。

下面将直接直接使用stitch完成图像拼接。

PS:在安装文件下,提供了图像拼接的例子:opencv\samples\cpp\stitching.cpp  

下面是我自己根据自身需求对源代码的一些改写,实现了在预定文件夹下提取图片文件并完成拼接的功能(Unicode):

#include "stdafx.h"
#include <windows.h>
#include <iostream>
#include <fstream>
#include "opencv.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/stitcher.hpp"

using namespace std;
using namespace cv;

bool try_use_gpu = false;
vector<Mat> imgs;
char result_name[] = "pic//result.jpg";

std::string WcsToMbs( const std::wstring& wcs ) 
{    
	int lengthOfMbs = WideCharToMultiByte( CP_ACP, 0, wcs.c_str(), -1, NULL, 0, NULL, NULL); 
	char* mbs = new char[ lengthOfMbs ]; 
	WideCharToMultiByte( CP_ACP, 0, wcs.c_str(), -1, mbs, lengthOfMbs, NULL, NULL); 
	std::string result = mbs; 
	delete mbs; 
	mbs = NULL; 
	return result; 
}

BOOL FindPic(WCHAR *szDir)
{
	WCHAR directory[MAX_PATH];
	WCHAR file[MAX_PATH];
	HANDLE hFile;
	WIN32_FIND_DATA fd;
	memset( &fd, 0, sizeof(WIN32_FIND_DATA) );
	wcsncpy_s(directory, szDir, MAX_PATH);//char*strncpy(char*dest,char*src,size_tn);复制字符串src中的内容到字符串dest中,复制多少由size_t的值决定
	wcscat_s(directory,_T("*.*"));//char *strcat(char *dest,char *src);把src所指字符串添加到dest结尾处(覆盖dest结尾处的'\0')并添加'\0'
	hFile = FindFirstFile(directory, &fd);
	do
	{
		if( fd.cFileName[0] != '.' )
		{
			if( fd.dwFileAttributes != FILE_ATTRIBUTE_DIRECTORY)
			{
				memset(file, 0, MAX_PATH);
				wcscpy_s(file, szDir);
				wcscat_s(file, fd.cFileName );
				wcout<<file<<endl;
				
				Mat img;
				img = imread(WcsToMbs(file));
				if (img.empty())
				{
					cout<<"Could not open or find the image!"<<endl;
					return FALSE;
				}
				//imshow("图像", img);
				imgs.push_back(img);			
			}
		}
	}while(  FindNextFile( hFile, &fd) );

	return TRUE;
}

void ResizeImage()
{
	double fScale = 0.214;      //缩放倍数  
	CvSize czSize;              //目标图像尺寸
	IplImage *pSrcImage = cvLoadImage(result_name, CV_LOAD_IMAGE_UNCHANGED);  
	IplImage *pDstImage = NULL;   
	//计算目标图像大小  
	czSize.width = cvRound(pSrcImage->width * fScale);  
	czSize.height = cvRound(pSrcImage->height * fScale); 
	if (czSize.width<600||czSize.height<500)
	{
		czSize.width=600;
		czSize.height=500;
	}
	//创建图像并缩放  
	pDstImage = cvCreateImage(czSize, pSrcImage->depth, pSrcImage->nChannels);  
	cvResize(pSrcImage, pDstImage, CV_INTER_AREA); 
	//在指定窗口中显示图像  
	cvShowImage("result_resize", pDstImage);  
	//保存图片  
	cvSaveImage("pic//result_resize.jpg", pDstImage);  
}

int main(int argc, char* argv[])
{
	FindPic(_T("pic//"));

	// 调用createDefault函数生成默认的参数
	Stitcher stitcher = Stitcher::createDefault(try_use_gpu);

	// 使用stitch函数进行拼接
	Mat pano;
	Stitcher::Status status = stitcher.stitch(imgs, pano);

	// 保存结果图像
	imwrite(result_name, pano);

	// 显示结果图像
	imshow("全景图像", pano);

	ResizeImage();

	waitKey(0);
	return 0;
}

/*
//多字节字符串与宽字符串的转换
std::string WcsToMbs( const std::wstring& wcs ) 
{    
	int lengthOfMbs = WideCharToMultiByte( CP_ACP, 0, wcs.c_str(), -1, NULL, 0, NULL, NULL); 
	char* mbs = new char[ lengthOfMbs ]; 
	WideCharToMultiByte( CP_ACP, 0, wcs.c_str(), -1, mbs, lengthOfMbs, NULL, NULL); 
	std::string result = mbs; 
	delete mbs; 
	mbs = NULL; 
	return result; 
}
std::wstring MbsToWcs( const std::string& mbs ) 
{    
	int lengthOfWcs = MultiByteToWideChar( CP_ACP, 0, mbs.c_str(), -1, NULL, 0 ); 
	wchar_t* wcs = new wchar_t[ lengthOfWcs ]; 
	MultiByteToWideChar( CP_ACP, 0, mbs.c_str(), -1, wcs, lengthOfWcs ); 
	std::wstring result = wcs; 
	delete wcs; 
	wcs = NULL; 
	return result;
}
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值