[ICCV 2019] Few-shot Object Detection via Feature Reweighting

paper
supp
code

小样本目标检测

可能你要花几倍几十倍的时间去理解一个问题。理解了就好。
生活中有太多的事情,需要花时间才能理解。


Motivation

训练:在base类大样本上训练模型,得到一个小样本检测模型
测试:在novel类小样本上进行学习,识别测试图片上的novel类


Method

三个模块:
Feature Extractor: 学习meta feature可以从base类泛化到novel类,单阶段检测结构
输入:query set图片;
输出:base feature
Reweighting Module: 将support set中的N类样本映射到N个重加权向量,每个权重向量负责调整meta feature来检测对应类别。
【将这个思想用到fsl分类上,用attention机制来学习这个重加权向量】
注意:以5-way 1-shot为该模块的输入是5类的图片和对应的mask,一张图片上只有一个类别。
Prediction Layer: N类共享的分类器和框回归器
输入:reweighted feature。
输出:(o, x, y, h, w, c)——目标分数,框坐标及大小,类别分数。
最后,在分类分数上用softmax归一化得到最终的分类结果。

本文的训练测试方式是不是元学习的方式?meta-learner是什么,base-learner是什么?


Experiments

  1. 对比实验

  2. 性能分析

  • 学习速度

  • 重加权参数可视化

  • 学到的meta feature

  1. 消融实验
  • 重加权哪一层的特征?

  • 损失函数用哪个?

  • 重加权模块的输入应该是什么?

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值