五大CV顶会,两大机器人顶会关于few-shot-learning论文汇总(NIPS,ICML,CVPR,ECCV,ICCV)

这篇博客汇总了NIPS, ICML, CVPR, ECCV, ICCV等五大计算机视觉和机器学习顶会关于Few-Shot Learning的论文,涵盖了从2015年至2019年的研究进展,包括Meta-Learning、Zero-Shot Learning、One-Shot Learning等多个方向的重要成果。" 79052269,5621586,Coverity代码静态检测工具详解,"['代码质量', '静态工具', '内存安全', '异常处理', '代码分析']
摘要由CSDN通过智能技术生成


关键词为"few-shpot",“one-shot”,“meta learning”,“zero-shot”

1. NIPS

1.1 2015NIPS

[2015NIPS paperlist]

1.2 2016NIPS

[2016NIPS paperlist]

  • Learning feed-forward one-shot learners
    Luca Bertinetto, University of Oxford; Joao Henriques, University of Oxford; Jack Valmadre*, University of Oxford; Philip Torr, ; Andrea Vedaldi,

1.3 2017NIPS

[2017NIPS paperlist]

  • One-Shot Imitation Learning Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter Abbeel, Wojciech Zaremba [paper]
  • Few-Shot Learning Through an Information Retrieval Lens Eleni Triantafillou, Richard Zemel, Raquel Urtasunm [paper]
  • Prototypical Networks for Few-shot Learning Jake Snell, Kevin Swersky, Richard Zemel [paper]
  • Few-Shot Adversarial Domain Adaptation Saeid Motiian, Quinn Jones, Seyed Iranmanesh, Gianfranco Doretto [paper]

1.4 2018NIPS

[2018NIPS paperlist]

  • MetaGAN: An Adversarial Approach to Few-Shot Learning Ruixiang ZHANG, Tong Che, Zoubin Ghahramani, Yoshua Bengio, Yangqiu Song [paper]
  • Delta-encoder: an effective sample synthesis method for few-shot object recognition Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary, Mattias Marder, Abhishek Kumar, Rogerio Feris, Raja Giryes, Alex Bronstein [paper]
  • TADAM: Task dependent adaptive metric for improved few-shot learning Boris Oreshkin, Pau Rodríguez López, Alexandre Lacoste [paper]
  • Neural Voice Cloning with a Few Samples Sercan Arik, Jitong Chen, Kainan Peng, Wei Ping, Yanqi Zhou [paper]
  • One-Shot Unsupervised Cross Domain Translation Sagie Benaim, Lior Wolf[paper]
  • Domain-Invariant Projection Learning for Zero-Shot Recognition An Zhao, Mingyu Ding, Jiechao Guan, Zhiwu Lu, Tao Xiang, Ji-Rong Wen [paper]
  • Generalized Zero-Shot Learning with Deep Calibration Network Shichen Liu, Mingsheng Long, Jianmin Wang, Michael I. Jordan [paper]
  • Stacked Semantics-Guided Attention Model for Fine-Grained Zero-Shot Learning yunlong yu, Zhong Ji, Yanwei Fu, Jichang Guo, Yanwei Pang, Zhongfei (Mark) Zhang [paper]
  • Hierarchical Reinforcement Learning for Zero-shot Generalization with Subtask Dependencies Sungryull Sohn, Junhyuk Oh, Honglak Lee [paper]
  • Meta-Learning MCMC Proposals Tongzhou Wang, YI WU, Dave Moore, Stuart J. Russell [paper]
  • Bayesian Model-Agnostic Meta-Learning Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, Sungjin Ahn [paper]
  • Probabilistic Model-Agnostic Meta-Learning Chelsea Finn, Kelvin Xu, Sergey Levine [paper]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值