关键词为"few-shpot",“one-shot”,“meta learning”,“zero-shot”
1. NIPS
1.1 2015NIPS
1.2 2016NIPS
- Learning feed-forward one-shot learners
Luca Bertinetto, University of Oxford; Joao Henriques, University of Oxford; Jack Valmadre*, University of Oxford; Philip Torr, ; Andrea Vedaldi,
1.3 2017NIPS
- One-Shot Imitation Learning Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter Abbeel, Wojciech Zaremba [paper]
- Few-Shot Learning Through an Information Retrieval Lens Eleni Triantafillou, Richard Zemel, Raquel Urtasunm [paper]
- Prototypical Networks for Few-shot Learning Jake Snell, Kevin Swersky, Richard Zemel [paper]
- Few-Shot Adversarial Domain Adaptation Saeid Motiian, Quinn Jones, Seyed Iranmanesh, Gianfranco Doretto [paper]
1.4 2018NIPS
- MetaGAN: An Adversarial Approach to Few-Shot Learning Ruixiang ZHANG, Tong Che, Zoubin Ghahramani, Yoshua Bengio, Yangqiu Song [paper]
- Delta-encoder: an effective sample synthesis method for few-shot object recognition Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary, Mattias Marder, Abhishek Kumar, Rogerio Feris, Raja Giryes, Alex Bronstein [paper]
- TADAM: Task dependent adaptive metric for improved few-shot learning Boris Oreshkin, Pau Rodríguez López, Alexandre Lacoste [paper]
- Neural Voice Cloning with a Few Samples Sercan Arik, Jitong Chen, Kainan Peng, Wei Ping, Yanqi Zhou [paper]
- One-Shot Unsupervised Cross Domain Translation Sagie Benaim, Lior Wolf[paper]
- Domain-Invariant Projection Learning for Zero-Shot Recognition An Zhao, Mingyu Ding, Jiechao Guan, Zhiwu Lu, Tao Xiang, Ji-Rong Wen [paper]
- Generalized Zero-Shot Learning with Deep Calibration Network Shichen Liu, Mingsheng Long, Jianmin Wang, Michael I. Jordan [paper]
- Stacked Semantics-Guided Attention Model for Fine-Grained Zero-Shot Learning yunlong yu, Zhong Ji, Yanwei Fu, Jichang Guo, Yanwei Pang, Zhongfei (Mark) Zhang [paper]
- Hierarchical Reinforcement Learning for Zero-shot Generalization with Subtask Dependencies Sungryull Sohn, Junhyuk Oh, Honglak Lee [paper]
- Meta-Learning MCMC Proposals Tongzhou Wang, YI WU, Dave Moore, Stuart J. Russell [paper]
- Bayesian Model-Agnostic Meta-Learning Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, Sungjin Ahn [paper]
- Probabilistic Model-Agnostic Meta-Learning Chelsea Finn, Kelvin Xu, Sergey Levine [paper]