Matlab 信号特征指标 诊断
提供36个多征兆域特征提取方法,可用于轴承、齿轮等故障分类、寿命预测等场景
时域统计指标(16个):裕度、偏斜度等
频率统计指标(13个):频谱重心、频谱方差等
非线性动力学指标(2个)
熵指标(5个):近似熵、排列熵等
附带文档说明指标算法及物理含义
ID:7330642822307893
西红柿首富7211
Matlab信号特征指标诊断
在工程领域,特征提取是一项关键任务,它能够通过提取信号的特征指标,帮助我们实现相关的故障分类、寿命预测等应用。本文将介绍一种基于Matlab的信号特征指标诊断方法,提供了36种多征兆域特征提取方法,适用于轴承、齿轮等故障分类、寿命预测等场景。这些指标涵盖了时域统计指标、频率统计指标、非线性动力学指标和熵指标。
时域统计指标是信号处理中常用的一种方法,它通过对信号的幅值进行统计来描述信号的特征。在本方法中,我们提供了16个时域统计指标,其中包括裕度、偏斜度等。裕度指标可以反映信号的幅度范围,偏斜度指标可以反映信号分布的不均匀程度。通过这些指标,我们可以从时域的角度对信号进行分析,找出其中的故障特征。
频率统计指标是另一种常