模拟126邮箱实现一次上传多个附件的例子

最近,有好些网友问到类似的问题,我于是就做了个简单的例子,相信大家一看就明白。

有一点说明的是:对于file控件,必须点击他本身才可能完成对文件的上传,通过脚本打开选择文件对话框以后是无法再上传文件的,这也许是基于安全的考虑,即必须用户本人主观去上传本机的文件,否则本机文件有可能被脚本恶决上传。

 我这里只充许上传jpg和gif图片,当然你可以根据需要自己修改。

请看示例:

 

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 9
    评论
以下是一个模拟退火算法的例子,用于解决旅行商问题(Traveling Salesman Problem,TSP): ```python import random import math def calculate_distance(city1, city2): # 计算两个城市之间的距离 x_diff = city1[0] - city2[0] y_diff = city1[1] - city2[1] distance = math.sqrt(x_diff**2 + y_diff**2) return distance def calculate_total_distance(cities, order): # 计算给定顺序下的总路程 total_distance = 0 num_cities = len(order) for i in range(num_cities): city1 = cities[order[i]] city2 = cities[order[(i+1) % num_cities]] distance = calculate_distance(city1, city2) total_distance += distance return total_distance def simulated_annealing(cities, initial_order, initial_temperature, cooling_rate): current_order = initial_order current_temperature = initial_temperature best_order = current_order.copy() best_distance = calculate_total_distance(cities, current_order) while current_temperature > 1: # 生成新解 new_order = current_order.copy() index1 = random.randint(0, len(new_order)-1) index2 = random.randint(0, len(new_order)-1) new_order[index1], new_order[index2] = new_order[index2], new_order[index1] # 计算当前和新解的总路程 current_distance = calculate_total_distance(cities, current_order) new_distance = calculate_total_distance(cities, new_order) # 判断是否接受新解 if new_distance < current_distance or random.random() < math.exp((current_distance - new_distance) / current_temperature): current_order = new_order current_distance = new_distance # 更新最优解 if current_distance < best_distance: best_order = current_order.copy() best_distance = current_distance # 降温 current_temperature *= cooling_rate return best_order, best_distance # 城市坐标 cities = [(0, 0), (1, 5), (3, 2), (4, 7), (6, 3)] # 初始顺序 initial_order = [0, 1, 2, 3, 4] # 初始温度和降温率 initial_temperature = 100 cooling_rate = 0.99 # 运行模拟退火算法 best_order, best_distance = simulated_annealing(cities, initial_order, initial_temperature, cooling_rate) print("最优顺序:", best_order) print("最短路程:", best_distance) ``` 这个例子中,我们随机生成了5个城市的坐标,然后使用模拟退火算法来寻找这些城市之间的最短路径。算法通过不断交换城市的顺序,并根据一定的概率接受劣解,从而逐渐收敛到全局最优解。最后输出最优顺序和最短路程。请注意,这只是一个简单的示例,实际的旅行商问题可能涉及更多的城市和复杂的优化目标。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cpp2017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值