组合数学基础

本文探讨了抽屉原理在数字序列和连续子序列和的求解中的应用,以及容斥原理在寻找与数互质和整除数计数问题中的运用。同时,介绍了组合数的计算方法,包括杨辉三角、取模技巧和卡特兰数列,涉及了卡特兰数列在特定问题中的经典求解。
摘要由CSDN通过智能技术生成

抽屉原理

经典应用:
给出一个含有 n 个数字的序列,找一个连续的子序列,使他们的和是 c 的倍数

#include<cstdio>
#include<cstring>

using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
ll a[N],dr[N];
ll sum[N];
int main(){
    ll c,n;
    while(~scanf("%lld%lld",&c,&n)){
        memset(dr,-1,sizeof(dr));
        dr[0] = 0;
        sum[0] = 0;

        for(ll i = 1;i <= n;i ++){
            scanf("%lld",&a[i]);
            sum[i] = sum[i - 1] + a[i];
        }

        for(ll i = 1;i <= n;i ++){
            if(dr[sum[i] % c] != -1){
                for(ll j = dr[sum[i] % c] + 1;j < i;j ++) printf("%lld",j);
                printf("%lld\n",i);
                break;
            }
            dr[sum[i] % c] = i;
        }
    }
    return 0;
}

容斥原理

记住核心:奇加偶减
应用:
1.求[a,b]中与n互质的数的数量
容斥思想体现在cal函数中

#include<cstdio>
#include<cstring>

using namespace std;
const int N = 110;
typedef long long ll;
bool bprime[N];
ll prime[N],cnt,fac[N],num;
void isp(){//筛素数
    cnt = 0;
    memset(bprime,0,sizeof(bprime));
    for(int i = 2;i < N;i ++){
        if(!bprime[i]){
            prime[cnt ++] = i;
            for(int j = i * 2;j < N;j += i)
                bprime[i] = true;
        }
    }
}

void getfac(int n){//质因数分解
    num = 0;
    for(int i = 0;prime[i] * prime[i] <= n && i < cnt;i ++){
        if(n % prime[i] == 0){
            fac[num ++] = prime[i];
            while(n % prime[i] == 0)
                n /= prime[i];
        }
    }
    if(n != 1) fac[num ++] = n;
}

ll cal(int m,int num){
    ll ans = 0;
    for(ll i = 1;i < (1 << num);i ++){
        ll sum = 0;
        ll tmp = 1;
        for(ll j = 0;j < num;j ++){
            if(i & (1 << j)){
                sum ++;
                tmp *= fac[j];
            }
        }
        if(sum % 2) ans += m / tmp;
        else ans -= m / tmp;
    }
}

int main(){
    isp();
    ll a,b,n;
    scanf("%lld%lld%lld",&a,&b,&n);
    getfac(n);
    ll res = (b - (a - 1) - cal(b,num) + cal(a - 1,num));
    printf("%lld\n",res);
    return 0;
}

2.求[1,n]中被m整除的数的个数
这个也类似

LL GCD(LL a,LL b){
    return !b?a:GCD(b,a%b);
}
LL LCM(LL a,LL b){
    return a/GCD(a,b)*b;
}
LL a[N];
int main(){
    LL n;
    int m;
    scanf("%lld%d",&n,&m);
    for(int i=0;i<m;i++)
        scanf("%lld",&a[i]);
 
    LL sum=0;
    for(int i=0;i<(1<<m);i++){//2^m种状态
        LL lcm=1;
        LL cnt=0;
        for(int j=0;j<m;j++){
            if(i&(1<<j)){//从m中选出j个数
                lcm=LCM(lcm,a[j]);
                cnt++;
            }
        }
        if(cnt!=0){
            if(cnt&1)//奇加
                sum+=n/lcm;
            else//偶减
                sum-=n/lcm;
        }
    }
    printf(%lld "%lld\n",sum,n-sum);
    return 0;
}

组合数计算

杨辉三角打表

int f[N][N];
void init(){
    for(int i = 1;i <= N;i ++){
        f[i][0] = 1;
        f[i][i] = 1;
        for(int j = 1;j <= N;j ++){
            f[i][j] = f[i - 1][j] + f[i - 1][j - 1];
        }
    }
}

约分求重数

组合数取模

用逆元(要求p为质数)

#include<cstdio>
using namespace std;
const int mod = 1e9 + 7;
const int N = 1e5 + 10;
typedef long long ll;
ll fac[N];
void init(){//预处理出阶乘
    fac[1] = 1;
    for(int i = 1;i <= N;i ++)
        fac[i] = fac[i - 1] * i % mod;
}

ll qpow(int a,int b){//快速幂求逆元
    ll ans = 1;
    while(b){
        if(b & 1) ans = ans * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return ans;
}
int main(){
    int n,m;
    init();
    scanf("%d",&n,&m);
    ll ans = fac[n] * qpow(fac[m],mod - 2) % mod * qpow(fac[n - m],mod - 2) % mod;
    printf("lld\n",ans);
    return 0;
}

卢卡斯定理
递归实现:

#include<cstdio>

using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
const int mod = 1e6 + 7;
ll fac[N];

void getfac(){//预处理阶乘
    fac[0] = 1;
    for(int i = 1;i < N;i ++){
        fac[i] = fac[i - 1] * i % mod;
    }
}
ll qpow(ll a,ll b){
    ll ans = 1;
    while(b){
        if(b & 1){
            ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
    }
    return ans;
}

ll getC(ll n,ll m){//获取C(n,m) % mod
    if(m > n) return 0;
    return fac[n] * (qpow(fac[m] * fac[n - m] % mod,mod - 2)) % mod;
}

ll lucas(ll n,ll m){
    if(m == 0) return 1;
    return getC(n % mod, m % mod) * lucas(n / mod, m / mod) % mod;
}
int main(){
    getfac();
    ll n,m;
    scanf("%lld%lld",&n,&m);
    printf("%lld\n",lucas(n,m));
    return 0;
}

卡特兰数列

最经典的问题就是:
有n个0和n个1,问满足前k个数中1的个数大于0的个数的数列种类数
具体可以看这个:
卡特兰解释与应用
n<35的卡特兰数列算法

ll h[36];
void init(){
    h[0] = h[1] = 1;
    for(int i = 2;i <= 35;i ++){
        h[i] = 0;
        for(int j = 0;j < i;j ++){
            h[i] += h[j] * h[i - j - 1];
        }
    }
}

n<100的卡特兰数列算法(高精)

#include<cstdio>
#include<cstring>
using namespace std;
const int N = 110;
int a[N][N];
void mul(int num,int n,int b){
    int tmp = 0;
    for(int i = n - 1;i >= 0;i --){
        tmp += b * a[num][i];
        a[num][i] = tmp % 10;
        tmp /= 10;
    }
}

void div(int num,int n,int b){
    int tmp = 0;
    for(int i = 0;i < n;i ++){
        tmp = tmp * 10 + a[num][i];
        a[num][i] = tmp / b;
        tmp %= b;
    }
}

void init(){
    memset(a,0,sizeof(a));
    a[1][N - 1] = 1;
    for(int i = 2;i <= N;i ++){
        memcpy(a[i],a[i - 1],sizeof(a[i - 1]));
        mul(i,N,4 * i - 2);
        div(i,N,i + 1);
    }
}
int main(){
    init();
    int n;
    while(scanf("%d",&n) != EOF){
        int i;
        for(i = 0;i < N && !a[n][i];i ++);
        printf("%d",a[n][i ++]);
        for(;i < N;i ++)
            printf("%d",a[n][i]);
        printf("\n");
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值