统计汉明距离

题目描述

两个整数的 汉明距离 指的是这两个数字的二进制数对应位不同的数量。

计算一个数组中,任意两个数之间汉明距离的总和。

示例:

输入: 4, 14, 2

输出: 6

解释: 在二进制表示中,4表示为0100,14表示为1110,2表示为0010。(这样表示是为了体现后四位之间关系)
所以答案为:
HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6.

注意:

数组中元素的范围为从 0到 10^9。
数组的长度不超过 10^4。

题目分析

按照正常的思路暴力解的话,肯定是双重循环,比较每一个数字与其他未比较过的数字的汉明距离,最后求总和。这样子的话时间效率将会是O(n^2)。然而我们学习算法,当然是追求优化~

下面介绍一种优化的算法:

在计算汉明距离时,我们考虑的是同一比特位上的值是否不同,而不同比特位之间是互不影响的。

对于数组 nums中的某个元素 val,若其二进制的第 i 位为 1,我们只需统计 nums中有多少元素的第 i 位为 0,即计算出了 val 与其他元素在第 i 位上的汉明距离之和。

具体地,若长度为 n 的数组 nums 的所有元素二进制的第 i 位共有 c 个 1,n−c 个 0,则此数组在二进制的第 i 位上的汉明距离之和为 c⋅(n−c)

我们可以从二进制的最低位到最高位,逐位统计汉明距离。将每一位上得到的汉明距离累加即为答案。

具体实现时,对于整数 val 二进制的第 i 位,我们可以用代码 (val >> i) & 1 来取出其第 i+1 位的值。此外,由于 由于 1 0 9 10^{9} 109< 2 30 2^{30} 230-1 ,意味着第我们可以直接从二进制从右往左数的的第 1 位枚举到第 29 位,第30位肯定为0。

正解代码

class Solution {
    public int totalHammingDistance(int[] nums) {
        int ans = 0, n = nums.length;
        // 从二进制的1位枚举到第29位
        for (int i = 0; i < 30; ++i) {
            int c = 0;
            // 统计 nums 中有多少元素的第 i位为 1
            for (int val : nums) {
                c += (val >> i) & 1;
            }
            // 累加每个位上得到的汉明距离
            ans += c * (n - c);
        }
        return ans;
    }
}

>>是带符号右移, 1&1 = 1 , x & 0 =0

这样子优化后

  • 时间复杂度:O(n⋅L)。其中 n 是数组 nums的长度,L=30

  • 空间复杂度仍然为:O(1)

来源:力扣(LeetCode)

### C语言实现汉明距离算法 在C语言中,可以通过按位操作来高效地计算两个整数之间的汉明距离。下面是一个完整的示例代码及其解释。 #### 示例代码 ```c #include <stdio.h> // 计算两个整数的汉明距离 int hammingDistance(int x, int y) { int xor_result = x ^ y; // 对x和y执行异或操作,相同位置为0,不同位置为1 int distance = 0; // 循环统计异或结果中1的数量 while (xor_result != 0) { if (xor_result % 2 == 1) { // 判断最低位是否为1 distance++; } xor_result = xor_result >> 1; // 将结果右移一位 } return distance; } int main() { int num1 = 4; // 二进制表示为 100 int num2 = 1; // 二进制表示为 001 int distance = hammingDistance(num1, num2); printf("汉明距离为:%d\n", distance); return 0; } ``` 上述代码通过以下几个步骤实现了汉明距离的计算: 1. **异或操作**:`x ^ y` 的作用是比较 `x` 和 `y` 中每一位的不同之处,相同的位会变为 `0`,不同的位会变为 `1`[^1]。 2. **统计1的数量**:通过对异或结果逐位检查并计数,得到最终的汉明距离[^5]。 --- #### 进一步优化 为了提高效率,可以利用 Brian Kernighan 算法减少循环次数。这种方法每次去掉最右边的一个 `1`,直到所有的 `1` 被清零为止: ```c #include <stdio.h> // 使用Brian Kernighan算法优化汉明距离计算 int hammingDistanceOptimized(int x, int y) { int xor_result = x ^ y; // 异或操作找出不同位 int distance = 0; // 去掉最右侧的1,直至所有1被清除 while (xor_result != 0) { distance++; xor_result &= (xor_result - 1); // 清除最右侧的1 } return distance; } int main() { int num1 = 4; // 二进制表示为 100 int num2 = 1; // 二进制表示为 001 int distance = hammingDistanceOptimized(num1, num2); printf("汉明距离为:%d\n", distance); return 0; } ``` 这种优化方法减少了不必要的迭代,尤其当输入数据较大时效果显著[^4]。 --- #### 应用场景 汉明距离广泛应用于多个领域,例如: - DNA序列比对:比较两条DNA链的差异程度[^3]。 - 错误检测与纠正编码:评估传输过程中发生的错误数量。 - 数据压缩与加密:衡量两组数据间的相似性和变化量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值