lyl771857509的博客

默默的做个程序猿

pytorch 中BatchNormation的理解。

一:先来看看pytorch BatchNorm2d的官方文档。   由上图可知,当affine=True时,除了计算batchnormation需要计算均值、方差之外还有两个额外的超参数,。这两个超参数是仿射变换所需的参数并且这两个超参数在网络训练中是可以学习到的,即可以不断的更新。所以...

2019-05-13 00:44:54

阅读数 14

评论数 0

window下labelme json_to_dataset批量转化

一:window10+anaconda+lableme 安装。 window10下anaconda安装labelme教程 二:对标注的json文件进行批量转化 1:创建json_to_dataset.py脚本。 import argparse import json import os ...

2019-04-15 16:03:23

阅读数 49

评论数 0

【python】内置函数 slice()

slice() 函数实现切片对象,主要用在切片操作函数里的参数传递。 先来看看其定义吧  函数实际上是切片类的一个构造函数,返回一个切片对象,千万不能把其当作函数使用。默认start, step为None; 下面看个例子: import numpy as np arr=np.arange...

2018-12-16 16:21:47

阅读数 130

评论数 0

【collections模块】collections.namedtuple使用

这里namedtuple函数返回的是一个名为typename的tuple子类,这个子类可以通过field_names访问子类的tuple成员,比tuple有更强大的功能。 1:tuple通过item的index访问数据,或者通过index访问其item student=('math','ch...

2018-12-14 12:37:38

阅读数 92

评论数 0

window10+anaconda+lableme 安装教程以及遇到的bug解决方案

1:打开Anaconda Prompt 2:创建虚拟环境 conda create --name=labelme python=3.6    (这里你可以选择自己的python版本) 3:激活刚才创建的环境并进入 activate labelme 4:安装pyqt conda in...

2018-12-11 16:09:30

阅读数 245

评论数 1

【python】一文弄懂迭代器iteror(__next__)对象与可迭代iterable对象

一、定义区别 刚开始学的经常会被迭代器与可迭代对象弄混淆,下面清晰的介绍两者的不同。 迭代器 Iterator (对象):如果一个对象同时拥有__iter__  和 __next__方法的(对象),也就是说可以被next()函数调用并不断返回下一个值的对象称为迭代器。 可迭代iterable...

2018-12-05 23:35:36

阅读数 147

评论数 0

【python】魔法之__getattribute__,__getattr__的用法总结

1:当定义一个类的实例时,毫无疑问首先调用类的初始化函数 def __init__(self)。 2:当我们用的实例去访问实例的属性时,则首先调用方法  def __getatttibute__(self) 3:   在类内没有方法 def __getattr__(self) 的前提下,如果用...

2018-12-03 03:10:17

阅读数 159

评论数 0

【pytorch】自定义读取数据集,使用txt文本

使用txt文本读入数据可以减少内存的需要,有时候自定义加载数据集是非常必要的,我下面的代码是针对图像的,并且带有label的有监督的图像。先看代码: import numpy as np import os import torch.nn as nn from PIL import Image...

2018-11-30 04:04:57

阅读数 940

评论数 0

【pytorch】加载模型出现的bug

在模型训练完后再进行测试加载模型后出现bug,显示如下错误   据了解是由于pytorch版本导致的错误,可能与自己训练阶段保持的模型方式有关,训练阶段保存方式如下: 解决方案如下: 方法一: generator.load_state_dict({k.replace('module...

2018-11-30 03:45:17

阅读数 506

评论数 0

【论文详解】WESPE:Weakly Supervised Photo Enhancer for Digital Cameras

与上篇论文一样属于图像增强的一篇论文,这篇论文和上篇论文属于同一实验室提出的,这篇论文对上篇DPED强监督学习的一种不足进行改进。因为在现实世界中很难得到一模一样的低质量图像(指手机拍摄的)与高质量图像(相机拍摄的)。对此这篇文章提出可以实现一种弱监督的方法使网络能够学习到从低质量的图像域到高质量...

2018-11-28 21:36:14

阅读数 457

评论数 0

【pycharm】ubuntu 、window系统pycharm激活码(亲测可用的长期有效方法)

这里只介绍采用激活码激活的方法。 如果是window系统则hosts文件路径为:C:\Windows\System32\drivers\etc,将0.0.0.0 account.jetbrains.com添加到末尾即可。如下图所示: 如果是linux系统  Linux的hosts文件路径...

2018-11-25 03:37:20

阅读数 745

评论数 0

【论文详解】DPED:DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks

目录 1.论文概述 2.效果展示 3.网络内容介绍 3.1作者的贡献 3.2 网络数据 3.3 网络结构 3.4 损失函数 3.4.1颜色损失。 3.4.2纹理损失textures loss。 3.4.3内容损失 content loss。  3.4.4梯度损失 total ...

2018-11-24 00:44:51

阅读数 990

评论数 0

【神经网络】VGG16、VGG16_bn、VGG19_bn详解以及使用pytorch进行模型预训练

目录 一、论文 二、模型介绍 三、模型预训练 一、论文 先来看看VGG这篇论文《Very Deep Convolutional Networks for Large-Scale Image Recognition》论文下载地址 论文中几个模型主要以几下几种方案A、B、C、D、E。目前主...

2018-11-17 11:28:07

阅读数 3604

评论数 0

pytorch 自定义卷积核进行卷积操作

一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilatio...

2018-11-16 02:43:36

阅读数 2986

评论数 1

pytorch 求网络模型参数

用pytorch训练一个神经网络时,我们通常会很关心模型的参数总量。下面分别介绍来两种方法求模型参数 一 .求得每一层的模型参数,然后自然的可以计算出总的参数。 1.先初始化一个网络模型model 比如我这里是 model=cliqueNet(里面是些初始化的参数) 2.调用model的P...

2018-11-16 00:43:13

阅读数 402

评论数 0

pytorch 卷积 分组卷积 及其深度卷积

先来看看pytorch二维卷积的操作API                                           现在继续讲讲几个卷积是如何操作的。 一. 普通卷积 torch.nn.Conv2d(in_channels, out_ch...

2018-11-15 20:49:05

阅读数 1652

评论数 0

numpy中将行向量变为列向量

1、numpy中shape=(m, )其实默认是一个 1xm的行向量 示例: 1.1 生成一个shape=(m,)的数组   2、numpy中将行向量转为列向量的集中方法 因为(m,1)是一维数组,默认是行向量,要想变成列向量,mxn. 就必须增加一个维度 2.1  reshape...

2018-11-14 12:18:39

阅读数 2476

评论数 0

python 自带的sum函数与numpy中sum两者巨大的区别

Python自带的sum函数与numpy中的sum函数有着天壤之别,没弄懂之前踩了大坑。 1、Python 自带的sum Python自带的sum输入是个可迭代的。可以是列表,数组,可迭代对象。此时sum最多有两个参数第一个参数是可迭代的。当有两个参数时,第二个参数只能是个数。 格式:sum...

2018-11-14 05:55:28

阅读数 378

评论数 2

ResNet: Deep Residual Learning for Image Recognition详解

Deep Residual Learning for Image Recognition 这是一篇2015年何凯明在微软团队提出的一篇大作,截止目前其论文引用量达12000多次。 摘要    网络比较深的模型比较难以训练。作者提出了一个残差学习的框架来减轻模型的训练难度,并使得其模型深度远远大...

2018-09-17 19:42:14

阅读数 138

评论数 0

SENet:Squeeze-and-Excitation Networks详解

这篇论文在2017年由Momenta 自动驾驶AI公司和斯坦福大学团队提出。 一、摘要      卷积神经网络通过在局部感受野上进行卷积操作来融合空间和通道信息提取信息的特征。为了增加网络的表达的能力,最近的方法比如增加稀疏编码获得了不错的效果。在本文中,作者关注通道之间的关系并且提出了一个新...

2018-09-16 23:06:03

阅读数 473

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭