数据结构——快速排序

基本思想:


快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
 

常见的快速排序:

// 假设按照升序对array数组中[left, right)区间中的元素进行排序
void QuickSort(int array[], int left, int right)
{
if(right - left <= 1)
return;
// 按照基准值对array数组的 [left, right)区间中的元素进行划分
int div = partion(array, left, right);
// 划分成功后以div为边界形成了左右两部分 [left, div) 和 [div+1, right)
// 递归排[left, div)
QuickSort(array, left, div);
// 递归排[div+1, right)
QuickSort(array, div+1, right);
}

上述为快速排序递归实现的主框架,发现与二叉树前序遍历规则非常像,大家在写递归框架时可想想二叉树前序遍历规则即可快速写出来,后序只需分析如何按照基准值来对区间中数据进行划分的方式即可。
将区间按照基准值划分为左右两半部分的常见方式有:

1.hoare版本

代码实现: 

void Swap(int* p1, int* p2)
{
	int temp = 0;
	temp = *p1;
	*p1 = *p2;
	*p2 = temp;
}
//hoare
//[left,right]
int PartSort(int* a, int left, int right)
{
	int keyi = left;
	while (left < right)
	{
		//右边找小
		while (left < right && a[right] >= a[keyi])
		{
			right--;
		}
		//左边找大
		while (left < right && a[left] <= a[keyi])
		{
			left++;
		}
		Swap(&a[left], &a[right]);
	}
	Swap(&a[keyi], &a[left]);
	return left;
}
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort(a, begin, end);
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

这时候有人会问了:“为什么left的起点是keyi的位置?” 

这时候我们就得考虑我们的极端场景了。

假如我们的key是0,left的起点在key的后面

那么我们的right始终找不到比key小的,最后和left相遇了。

 那么最终排出来的顺序是错误的,1怎么可能比0小?

注意事项: 

2.挖坑法 

Hoare大佬的方法很好,奠定了我们快排的基础思想,但是,里面的坑实在是很多,稍有不慎算法就容易出错,后人因此提出了疑问并且继续优化了快速排序的代码,例如挖坑法。

首先将我们的key的值存放起来,然后讲key值所在的位置挖空。

挖坑法的单趟排序跟Hoare版的可能大差不差,但是挖坑法会相比于Hoare版本更好理解。 

代码实现:

//挖坑法
// [left, right]
int PartSort(int* a, int left, int right)
{
	int key = a[left];
	int hole = left;
	while (left < right)
	{
		// 右边找小
		while (left < right && a[right] >= key)
		{
			right--;
		}
		a[hole] = a[right];
		hole = right;
		// 左边找大
		while (left < right && a[left] <= key)
		{
			left++;
		}
		a[hole] = a[left];
		hole = left;
	}
	a[hole] = key;
	return hole;
}
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort(a, begin, end);
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

3.前后指针法

代码实现: 

// 前后指针法
// [left, right]
int PartSort(int* a, int left, int right)
{
	int prev = left;
	int cur = left + 1;
	int keyi = left;
	while (cur <= right)
	{
		if (a[cur] < a[keyi] && ++prev != cur)
		{
			Swap(&a[prev], &a[cur]);
		}
		cur++;
	}
	Swap(&a[prev], &a[keyi]);
	keyi = prev;
	return keyi;
}
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort(a, begin, end);
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

快速排序的特性总结:


1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
2. 时间复杂度:O(N*logN)

 

3. 空间复杂度:O(logN)
4. 稳定性:不稳定

PS:大部分语言自带的库函数sort都是以快速排序为底层,快速排序虽然好但是在某些极端场景下不如插入排序,所以还是得分析需求再使用合理的排序,以免增加时间复杂度和空间复杂度。

PS:看到这里了,码字不易,给个一键三连鼓励一下吧!有不足或者错误之处欢迎在评论区指出!  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值