【学习笔记】图论状压 dp (abc 213)

G - Connectivity 2

题意:给你一张无向图,有 n n n 个顶点和 m m m 条边,存在 2 m 2^m 2m 种不同的子图。求子图的数量满足 1 1 1 i i i 联通。 n < = 17 n<=17 n<=17

Solution:

状压 dp 神题。

  1. 1 1 1 i i i 联通等价于 1 1 1 i i i 在同一连通块中。
  2. 看到总状态数 2 m 2^m 2m ,于是想到容斥,不过本题的条件是 至少存在一条 1->i 的路径 ,所以很遗憾暂时没有看到容斥的做法。
  3. 回到连通块的思考中。启发我们 枚举终止状态中 1 1 1 i i i 所处连通块集合,此时大概是一个连通块,内部点没有向外部点连的边。
  4. 那么我们只要计算出 f ( S ) f(S) f(S) 表示使集合 S S S 联通的图的方案数即可。令 c n t ( S ) cnt(S) cnt(S) 表示集合 S S S 内边 ( x , y ) (x,y) (x,y) 的数量,满足 x , y ∈ S x,y\in S x,yS 。那么答案为: a n s ( x ) = ∑ 1 ∈ S , x ∈ S f ( S ) 2 c n t ( U − S ) ans(x)=\sum_{1\in S,x\in S}f(S)2^{cnt(U-S)} ans(x)=1S,xSf(S)2cnt(US)
  5. f ( S ) f(S) f(S) 的状态转移为:(这里的方案数只包括 c n t ( S ) cnt(S) cnt(S) 中边的选择方案) f ( S ) = 2 m − ∑ x ∈ T , T ⊂ S f ( T ) 2 c n t ( S − T ) f(S)=2^{m}-\sum_{x\in T,T\subset S}f(T)2^{cnt(S-T)} f(S)=2mxT,TSf(T)2cnt(ST)

注意到 c n t ( S ) cnt(S) cnt(S) 可以在 O ( 2 n m ) O(2^nm) O(2nm) 内求出, f ( S ) f(S) f(S) 本质上是一个子集枚举。

时间复杂度 O ( 3 n + 2 n m ) O(3^n+2^nm) O(3n+2nm) 。总结:本题贵在状态的设计做到了不重不漏,在转移时巧妙运用了正难则反的思想,因为直接枚举子集会造成图的割边不唯一的情况。

请添加图片描述
一遍过 qwq… 其实当时不是没想到连通块的思路,就是不知道怎么算联通块的方案数。其实只要把总方案数减去小的连通块方案数就行了。

#include<bits/stdc++.h>
#define INF 1e9
#define ll long long
#define PII pair<ll,int>
#define All(a) a.begin(),a.end()
using namespace std;
const int mx=17;
const int mod=998244353;
inline int read() {
	int x=0,f=1; char c=getchar();
	while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
	while(c>='0'&&c<='9') {x=(x<<1)+(x<<3)+c-'0';c=getchar();}
	return x*f;
}
int n,m,u[1<<mx],v[1<<mx],fac[1<<mx];
ll res,cnt[1<<mx],f[1<<mx],ans[mx];
int main() {
	scanf("%d%d",&n,&m);
	fac[0]=1; for(int i=1;i<=m;i++) fac[i]=fac[i-1]*2%mod;
	for(int i=1;i<=m;i++) {
		scanf("%d%d",&u[i],&v[i]);
		u[i]--,v[i]--;
	}
	for(int i=0;i<1<<n;i++) {
		for(int j=1;j<=m;j++) {
			if(i>>u[j]&1 && i>>v[j]&1) {
				cnt[i]++;
			}
		}
	}
	for(int i=1;i<1<<n;i++) {
		f[i]=fac[cnt[i]];
		int x; 
		for(int j=0;j<n;j++) {
			if(i>>j&1) {
				x=j;
				break;
			}
		}
		for(int j=(i-1)&i;j;j=(j-1)&i) {
			if((j>>x&1)==0) continue;
			f[i]=(f[i]-f[j]*fac[cnt[i-j]]%mod)%mod;
		} 
	}
	for(int i=0;i<1<<n;i++) {
		if(i%2==0) continue; 
		ll tmp=f[i]*fac[cnt[(1<<n)-1-i]]%mod;
		for(int j=0;j<n;j++) {
			if((i>>j&1)==0) continue;
			ans[j]=(ans[j]+tmp)%mod;
		}
	}
	for(int i=1;i<n;i++) {
		if(ans[i]<0) ans[i]+=mod;
		printf("%lld\n",ans[i]);
	}
} 
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是一篇关于区间DP学习笔记,希望对你有所帮助。 ### 什么是区间DP 区间 DP 是一种动态规划算法,用于解决一些区间上的问题。具体来说,区间 DP 通常用于解决如下问题: - 最长公共子序列(LCS) - 最长递增子序列(LIS) - 最大子段和 - 区间选数问题 区间 DP 通常采用分治或递推的方式进行求解,具体方法取决于问题的性质。 ### 区间 DP 的递推方法 区间 DP 的递推方法通常有两种,一种是自底向上的递推方法,一种是自顶向下的记忆化搜索方法。 自底向上的递推方法通常采用二维数组或三维数组来记录状态转移方程,具体的递推方式如下: ```cpp for (int len = 2; len <= n; len++) { for (int i = 1; i <= n - len + 1; i++) { int j = i + len - 1; for (int k = i; k < j; k++) { // 状态转移方程 } } } ``` 其中,len 表示区间长度,i 和 j 分别表示区间的左右端点,k 表示区间的划分点。 自顶向下的记忆化搜索方法通常采用记忆化数组来记录状态转移方程,具体的递推方式如下: ```cpp int dp(int i, int j) { if (i == j) return 0; if (memo[i][j] != -1) return memo[i][j]; memo[i][j] = INF; for (int k = i; k < j; k++) { memo[i][j] = min(memo[i][j], dp(i, k) + dp(k + 1, j) + ...); } return memo[i][j]; } ``` 其中,i 和 j 分别表示区间的左右端点,k 表示区间的划分点,memo 数组用于记忆化状态转移方程。 ### 区间 DP 的优化 对于一些区间 DP 问题,我们可以通过一些技巧和优化来减少时间和空间的消耗。 一种常见的优化方式是状态压缩,将二维或三维数组压缩成一维数组,从而减少空间的消耗。 另一种常见的优化方式是使用滚动数组,将数组的维度从二维或三维减少到一维,从而减少时间和空间的消耗。 此外,对于一些具有特殊性质的区间 DP 问题,我们还可以使用单调队列或单调栈等数据结构来进行优化,从而减少时间和空间的消耗。 ### 总结 区间 DP 是一种常用的动态规划算法,用于解决一些区间上的问题。区间 DP 通常采用分治或递推的方式进行求解,具体方法取决于问题的性质。对于一些区间 DP 问题,我们可以通过一些技巧和优化来减少时间和空间的消耗。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值