【学习笔记】[AHOI2018初中组] 球球的排列

solution:

算法一:对于 n<=10 ,直接全排列枚举即可。

算法二:对于 n<=300 且 a[i]=1/2 ,直接分类讨论。

算法三:对于 n<=300 且 a[i] 是质数,问题转化为把 m 种颜色的球排列在一排,满足相邻球的颜色不同。

解法一

考虑 一种一种颜色地放。设 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 表示前 i i i 个球的排列中,满足颜色不等于第 i i i 个球且同色相邻的有 j j j 对,颜色等于第 i i i 个球且相邻的有 k k k 对时,排列 的方案数。(因为这里不好算重,所以设成排列)。答案为 d p [ n ] [ 0 ] [ 0 ] dp[n][0][0] dp[n][0][0] 。只要做到 O ( 1 ) O(1) O(1) 转移就好了。注意开头结尾可能要特殊讨论。

a [ i ] = a [ i + 1 ] a[i]=a[i+1] a[i]=a[i+1] 时:

Case 1: 将该球放于 与该球颜色相同的球旁边 。假设有 k ′ k' k 个第 i i i 种颜色的球, j ′ j' j 个非第 i i i 种颜色的球,那么有 2 k ′ − k 2k'-k 2kk 个位置可以填,

  1. ( 2 k ′ − k ) d p [ i ] [ j ] [ k ] -> d p [ i + 1 ] [ j ] [ k + 1 ] (2k'-k)dp[i][j][k]\text {->} dp[i+1][j][k+1] (2kk)dp[i][j][k]->dp[i+1][j][k+1]

Case 2: 将该球放于两个同色球之间。有 j j j 个位置可以填,

  1. j ∗ d p [ i ] [ j ] [ k ] -> d p [ i + 1 ] [ j − 1 ] [ k ] j*dp[i][j][k]\text{->}dp[i+1][j-1][k] jdp[i][j][k]->dp[i+1][j1][k]

Case 3: 将该球放于两个异色球之间。减去前两种情况就是这种情况,有 i + 1 − ( 2 k ′ − k ) − j i+1-(2k'-k)-j i+1(2kk)j 个位置可以填,

  1. ( i + 1 − ( 2 k ′ − k ) − j ) ∗ d p [ i ] [ j ] [ k ] -> d p [ i + 1 ] [ j ] [ k ] (i+1-(2k'-k)-j)*dp[i][j][k]\text{->}dp[i+1][j][k] (i+1(2kk)j)dp[i][j][k]->dp[i+1][j][k]

a [ i ] ≠ a [ i + 1 ] a[i]\ne a[i+1] a[i]=a[i+1] 时:

Case 1: 放于两个颜色相同的之间,

  1. ( j + k ) ∗ d p [ i ] [ j ] [ k ] -> d p [ i + 1 ] [ j + k − 1 ] [ 0 ] (j+k)*dp[i][j][k]\text{->}dp[i+1][j+k-1][0] (j+k)dp[i][j][k]->dp[i+1][j+k1][0]

Case 2: 放于两个颜色不同的之间,

  1. ( i + 1 − j − k ) ∗ d p [ i ] [ j ] [ k ] -> d p [ i + 1 ] [ j + k ] [ 0 ] (i+1-j-k)*dp[i][j][k]\text{->}dp[i+1][j+k][0] (i+1jk)dp[i][j][k]->dp[i+1][j+k][0]

时间复杂度 O ( n 3 ) O(n^3) O(n3) 。转移系数很恶心。。。还 tm 卡空间。

结合算法一,得到 80 p t s 80pts 80pts

算法四:简单推一下,会发现关系具有传递性。如果 a [ i ] ∗ a [ j ] a[i]*a[j] a[i]a[j] 是平方数,就向 ( i , j ) (i,j) (i,j) 连双向边。对于在同一连通块里的点不能有相邻。举个例子,可以用并查集维护。最后把每个并查集赋一个颜色,下标 i i i 的颜色就是它所处并查集的编号。最后按颜色排一个序即可。

得分 100 p t s 100pts 100pts

code:

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define PII pair<int,int>
#define ll long long
using namespace std;
const int mx=305;
const int mod=1e9+7;
int n,a[mx],p[mx],fa[mx],id[mx];
ll dp[2][mx][mx];
bool check(ll x) {
	ll y=sqrt(x);
	return y*y==x;
}
void Mod(ll &x,ll y) {
	y%=mod; x=(x+y)%mod;
}
int find(int x) {
	return fa[x]==x?x:fa[x]=find(fa[x]);
}
void unionset(int x,int y) {
	int u=find(x),v=find(y);
	if(u!=v) fa[u]=v;
}
signed main() { 
//   freopen("data.in","r",stdin);
    scanf("%d",&n); for(int i=1;i<=n;i++) fa[i]=i;
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    for(int i=1;i<=n;i++) {
    	for(int j=i+1;j<=n;j++) {
    		if(check(1ll*a[i]*a[j])) {
    			unionset(i,j);
			}
		}
	}
	int cnt(0);
	for(int i=1;i<=n;i++) {
		if(!id[find(i)]) id[find(i)]=++cnt;
	}
	for(int i=1;i<=n;i++) {
		a[i]=id[find(i)];
	}
	sort(a+1,a+1+n);
	dp[1][0][0]=1;
	int j2=0,k2=0;
	for(int i=1;i<n;i++) {
		if(a[i]==a[i-1]) k2++;
		else j2+=k2,k2=1;
		for(int j=0;j<=i+1;j++) {
			for(int k=0;k<=i+1-j;k++) {
				dp[i+1&1][j][k]=0;
			}
		}
		if(a[i]!=a[i+1]) {
			for(int j=0;j<=i;j++) {
				for(int k=0;k<=i-j;k++) {
				    ll tmp=dp[i&1][j][k];
				    if(!tmp) continue;
				    if(j+k) Mod(dp[i+1&1][j+k-1][0],(j+k)*tmp);
				    Mod(dp[i+1&1][j+k][0],(i+1-j-k)*tmp);
				}
			}
		}
		else {
			for(int j=0;j<=i;j++) {
				for(int k=0;k<=i-j;k++) {
					ll tmp=dp[i&1][j][k];
					if(!tmp) continue;
					Mod(dp[i+1&1][j][k+1],(2*k2-k)*tmp);
					Mod(dp[i+1&1][j][k],(i+1-(2*k2-k)-j)*tmp);
					if(j) Mod(dp[i+1&1][j-1][k],j*tmp);
				}
			}
		}
	}
	printf("%lld\n",dp[n&1][0][0]);
}

解法二 (upd in 2021/10/22)

需要利用组合数的知识。
在这里插入图片描述

code:

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define PII pair<int,int>
#define ll long long
using namespace std;
const int mx=305;
const int mod=1e9+7;
int n,a[mx],fa[mx],id[mx],s[mx],sum[mx],cnt;
ll c[mx][mx],fac[mx];
ll dp[mx][mx];
bool check(ll x) {
	ll y=sqrt(x);
	return y*y==x;
}
void Mod(ll &x,ll y) {
	x=(x+y)%mod;
}
int find(int x) {
	return fa[x]==x?x:fa[x]=find(fa[x]);
}
void unionset(int x,int y) {
	int u=find(x),v=find(y);
	if(u!=v) fa[u]=v;
}
inline ll G(int x,int y) {
	return c[x-1][y-1]*fac[x]%mod;
}
void init() {
	fac[0]=1;
	for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i%mod;
    for(int i=0;i<=n;i++) c[i][0]=1;
    for(int i=1;i<=n;i++) {
    	for(int j=1;j<=n;j++) {
    		c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
		}
	}
}
void solve() {
	dp[0][0]=1;
	for(int i=1;i<=cnt;i++) {
		sum[i]=sum[i-1]+s[i];
	}
	for(int i=0;i<cnt;i++) {
		for(int j=0;j<=sum[i];j++) {
			if(dp[i][j]) {
				for(int k=1;k<=s[i+1];k++) {
					for(int l=0;l<=min(j,k);l++) {
						Mod(dp[i+1][j+s[i+1]-k-l],dp[i][j]*c[j][l]%mod*c[sum[i]+1-j][k-l]%mod*G(s[i+1],k)%mod);
					}
				}
			}
		}
	}
}
signed main() { 
//   freopen("data.in","r",stdin);
    scanf("%d",&n); for(int i=1;i<=n;i++) fa[i]=i;
    init();
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    for(int i=1;i<=n;i++) {
    	for(int j=i+1;j<=n;j++) {
    		if(check(1ll*a[i]*a[j])) {
    			unionset(i,j);
			}
		}
	}
	for(int i=1;i<=n;i++) {
		id[find(i)]++;
	}
	for(int i=1;i<=n;i++) {
		if(fa[i]==i) {
			s[++cnt]=id[i];
		}
	}
	solve();
	printf("%lld",dp[cnt][0]);
}

o(n^2) 的神仙算法以后再补把。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值