随机变量的数字特征

随机变量的数字特征

数学期望

定义:设X是一个随机变量,X的数学期望,记为E(X),定义为

E ( X ) = { ∑ i x i p i , 离 散 形 式 ∫ − ∞ + ∞ x f ( x ) d x , 连 续 情 形 E(X)=\begin{cases} \sum_{i}x_ip_i ,离散形式\\ \int_{-\infty}^{+\infty}xf(x)dx,连续情形 \end{cases} E(X)={ixipi+xf(x)dx
其中 p i = P { X = x i } p_i=P\{X=x_i\} pi=P{X=xi},f(x)为密度函数

这里要求右式的级数或积分绝对收敛,即
∑ i ∣ x i ∣ p i < ∞ , 离 散 情 形 ∫ − ∞ + ∞ ∣ x ∣ f ( x ) d x < ∞ , 连 续 情 形 \sum_i|x_i|p_i<\infty,离散情形\\ \int_{-\infty}^{+\infty}|x|f(x)dx<\infty,连续情形 ixipi<+xf(x)dx<,

数学期望的性质
(1)设C是常数,则E©=C;
(2)若k是常数,则E(kX)=kE(X);
(3)E(E+Y)=E(X)+E(Y);
(4)设X,Y相互独立,则E(XY)=E(X)E(Y);
(5)若 X ≥ 0 X \ge 0 X0,则 E ( X ) ≥ 0 E(X)\ge0 E(X)0;
(6)若 X ≥ Y X \ge Y XY,则 E ( X ) ≥ E ( Y ) E(X) \ge E(Y) E(X)E(Y);
(3)的变形(3)’ E ( ∑ i = 1 n X i ) = ∑ i = 1 n E ( X i ) E(\sum_{i=1}^{n}X_i)=\sum_{i=1}^{n}E(X_i) E(i=1nXi)=i=1nE(Xi)
(4)的变形(4)'若 X 1 , X 2 . . . X n X_1,X_2...X_n X1,X2...Xn相互独立,则 E ( X 1 X 2 ⋅ ⋅ ⋅ X n ) = ∏ i = 1 n E ( X i ) E(X_1X_2\cdot\cdot\cdot X_n)=\prod_{i=1}^nE(X_i) E(X1X2Xn)=i=1nE(Xi)

柯西-施瓦茨不等式
设随机变量X,Y的数学期望及 E ( X 2 ) , E ( Y 2 ) E(X^2),E(Y^2) E(X2),E(Y2)都存在,则有 [ E ( X Y ) ] 2 ≤ E ( X 2 ) E ( Y 2 ) [E(XY)]^2 \le E(X^2)E(Y^2) [E(XY)]2E(X2)E(Y2)当且仅当存在实数C使P(Y=CX)=1上式等号成立
证:对任意实数 λ \lambda λ有: E ( λ X + Y ) 2 = λ 2 E ( X 2 ) + 2 λ E ( X Y ) + E ( Y 2 ) E(\lambda X+Y)^2=\lambda^2 E(X^2)+2\lambda E(XY)+E(Y^2) E(λX+Y)2=λ2E(X2)+2λE(XY)+E(Y2),由于对任意 λ \lambda λ恒有 E ( λ X + Y ) 2 ≥ 0 E(\lambda X+Y)^2 \ge 0 E(λX+Y)20即关于 λ \lambda λ的一元二次方程恒为非负,所以判别式必小于0,即 4 [ E ( X Y ) ] 2 − 4 E ( X 2 ) E ( Y 2 ) ≤ 0 4[E(XY)]^2-4E(X^2)E(Y^2) \le 0 4[E(XY)]24E(X2)E(Y2)0,所以 [ E ( X Y ) ] 2 ≤ E ( X 2 ) E ( Y 2 ) [E(XY)]^2 \le E(X^2)E(Y^2) [E(XY)]2E(X2)E(Y2),显然等号成立时即判别式等于0,存在常数 λ 0 \lambda_0 λ0使得 E [ ( λ 0 X + Y ) 2 ] = 0 E[(\lambda_0 X+Y)^2]=0 E[(λ0X+Y)2]=0,即 P ( Y = − λ 0 X ) = 1 P(Y=-\lambda_0 X)=1 P(Y=λ0X)=1

方差

定义:设随机变量X的 E X 2 EX^2 EX2存在,则称偏差平方的数学期望 E [ X − E ( X ) ] 2 E[X-E(X)]^2 E[XE(X)]2为随机变量X(或相应分布)的方差记为
V a r ( X ) = E [ X − E ( X ) ] 2 Var(X)=E[X-E(X)]^2 Var(X)=E[XE(X)]2
方差的性质
(1)常数的方差为0;
(2) V a r ( X + c ) = V a r ( X ) Var(X+c)=Var(X) Var(X+c)=Var(X),这里c是常数;
(3) V a r ( c X ) = c 2 V a r ( X ) Var(cX)=c^2Var(X) Var(cX)=c2Var(X);
对于随机变量X,若它的数学期望E(X)及方差Var(X)都存在,而且Var(X)>0,则考虑标准化的随机变量 X ∗ = X − E ( X ) V a r ( X ) X^*=\frac{X-E(X)}{\sqrt{Var(X)}} X=Var(X) XE(X)
显然 E ( X ∗ ) = 0 , V a r ( X ∗ ) = 1 E(X^*)=0,Var(X^*)=1 E(X)=0,Var(X)=1这正是称 X ∗ X^* X为标准化随机变量的理由
(4)若 c ≠ E ( X ) c\ne E(X) c=E(X),则 V a r ( X ) < E ( X − c ) 2 Var(X)<E(X-c)^2 Var(X)<E(Xc)2

常用的离散分布期望与方差

0—1分布

0—1分布的期望
其概率分布为: P ( X = 0 ) = q , P ( X = 1 ) = p P(X=0)=q,P(X=1)=p P(X=0)=q,P(X=1)=p
数学期望为: E ( X ) = ∑ i p i = 0 ⋅ q + 1 ⋅ p = p E(X)=\sum ip_i=0 \cdot q+1 \cdot p=p E(X)=ipi=0q+1p=p
0—1分布的方差
E ( X 2 ) = 1 2 ⋅ p + 0 2 ⋅ ( 1 − p ) = p E(X^2)=1^2\cdot p+0^2\cdot(1-p)=p E(X2)=12p+02(1p)=p,所以 V a r ( X ) = E ( X 2 ) − E ( X ) 2 ) = p − p 2 = p q Var(X)=E(X^2)-E(X)^2)=p-p^2=pq Var(X)=E(X2)E(X)2)=pp2=pq

二项分布

二项分布的期望
X X X~ B ( n , p ) B(n,p) B(n,p)其分布列为: P ( X = k ) = p k = C n k p k q n − k , k = 0 , 1 , 2 , ⋯ n P(X=k)=p_k=C_n^kp^kq^{n-k},k=0,1,2,\cdots n P(X=k)=pk=Cnkpkqnk,k=0,1,2,n
数学期望为: E ( X ) = ∑ k = 0 n k p k = ∑ k = 0 n k C n k p k q n − k = n p ∑ k = 0 n C n − 1 k − 1 p k − 1 q n − k = n p ( p + q ) n − 1 = n p E(X)=\sum_{k=0}^{n}kp_k=\sum_{k=0}^n kC_n^kp^kq^{n-k}=np\sum_{k=0}^{n}C_{n-1}^{k-1}p^{k-1}q^{n-k}=np(p+q)^{n-1}=np E(X)=k=0nkpk=k=0nkCnkpkqnk=npk=0nCn1k1pk1qnk=np(p+q)n1=np
二项分布的方差
E ( X 2 ) = ∑ k = 0 n k 2 C n k p k q n − k = ∑ k = 1 n k ( k − 1 + 1 ) C n k p k ( 1 − p ) n − k = ∑ k = 1 n k ( k − 1 ) C n k p k ( 1 − p ) n − k + ∑ k = 1 n k C n k p k ( 1 − p ) n − k = ∑ k = 2 n n ( n − 1 ) ( n − 2 ) ⋯ ( n − k + 1 ) ( k − 2 ) ! p 2 p k − 2 ( 1 − p ) n − k + n p = n ( n − 1 ) p 2 + n p E(X^2)=\sum_{k=0}^{n}k^2C_n^kp^kq^{n-k}=\sum_{k=1}^nk(k-1+1)C_n^kp^k(1-p)^{n-k}=\sum_{k=1}^nk(k-1)C_n^kp^k(1-p)^{n-k}+\sum_{k=1}^nkC_n^kp^k(1-p)^{n-k}=\sum_{k=2}^nn(n-1)\frac{(n-2)\cdots (n-k+1)}{(k-2)!} p^2p^{k-2}(1-p)^{n-k}+np=n(n-1)p^2+np E(X2)=k=0nk2Cnkpkqnk=k=1nk(k1+1)Cnkpk(1p)nk=k=1nk(k1)Cnkpk(1p)nk+k=1nkCnkpk(1p)nk=k=2nn(n1)(k2)!(n2)(nk+1)p2pk2(1p)nk+np=n(n1)p2+np,
V a r ( X ) = E ( X 2 ) − E ( X ) 2 = n 2 p 2 − n p 2 + n p − n 2 p 2 = n p ( 1 − p ) = n p q Var(X)=E(X^2)-E(X)^2=n^2p^2-np^2+np-n^2p^2=np(1-p)=npq Var(X)=E(X2)E(X)2=n2p2np2+npn2p2=np(1p)=npq

泊松分布

泊松分布的期望
X X X~ P ( λ ) P(\lambda) P(λ)其概率分布为: P ( X = k ) = p k = λ k k ! e − λ , k = 0 , 1 , 2 , ⋯ P(X=k)=p_k=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,\cdots P(X=k)=pk=k!λkeλ,k=0,1,2,
数学期望为: E ( X ) = ∑ k = 0 ∞ k p k = ∑ k = 0 ∞ k λ k k ! e − λ = λ e − λ ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! = λ e − λ e λ = λ E(X)=\sum_{k=0}^{\infty}kp_k=\sum_{k=0}^{\infty}k\frac{\lambda^k}{k!}e^{-\lambda}=\lambda e^{-\lambda}\sum_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}=\lambda e^{-\lambda}e^{\lambda}=\lambda E(X)=k=0kpk=k=0kk!λkeλ=λeλk=1(k1)!λk1=λeλeλ=λ
泊松分布的方差
E ( X 2 ) = ∑ k = 0 ∞ k 2 p k = ∑ k = 0 + ∞ k 2 λ k k ! e − λ = ∑ k = 1 + ∞ k λ k ( k − 1 ) ! e − λ = ∑ k = 1 + ∞ [ ( k − 1 ) + 1 ] λ k ( k − 1 ) ! e − λ = λ 2 e − λ ∑ k = 2 + ∞ λ k − 2 ( k − 2 ) ! + λ e − λ ∑ k = 1 + ∞ λ k − 1 ( k − 1 ) ! = λ 2 + λ E(X^2)=\sum_{k=0}^{\infty}k^2p_k=\sum_{k=0}^{+\infty}k^2\frac{\lambda^k}{k!}e^{-\lambda}=\sum_{k=1}^{+\infty}k\frac{\lambda^k}{(k-1)!}e^{-\lambda}=\sum_{k=1}^{+\infty}[(k-1)+1]\frac{\lambda^k}{(k-1)!}e^{-\lambda}=\lambda^2e^{-\lambda}\sum_{k=2}^{+\infty}\frac{\lambda^{k-2}}{(k-2)!}+\lambda e^{-\lambda}\sum_{k=1}^{+\infty}\frac{\lambda^{k-1}}{(k-1)!}=\lambda^2+\lambda E(X2)=k=0k2pk=k=0+k2k!λkeλ=k=1+k(k1)!λkeλ=k=1+[(k1)+1](k1)!λkeλ=λ2eλk=2+(k2)!λk2+λeλk=1+(k1)!λk1=λ2+λ,
V a r ( X ) = E ( X 2 ) − E ( X ) 2 = λ 2 + λ − λ 2 = λ Var(X)=E(X^2)-E(X)^2=\lambda^2+\lambda-\lambda^2=\lambda Var(X)=E(X2)E(X)2=λ2+λλ2=λ

几何分布

几何分布的期望
其概率分布为: P ( X = k ) = p k = q k − 1 p , k = 1 , 2 , ⋯ P(X=k)=p_k=q^{k-1}p,k=1,2,\cdots P(X=k)=pk=qk1p,k=1,2,
数学期望为: E ( X ) = ∑ k = 1 ∞ k p k = ∑ k = 1 ∞ k q k − 1 p = p ( 1 + 2 q + 3 q 2 + ⋯   ) = p ( q + q 2 + q 3 + ⋯   ) ′ = p ( q 1 − q ) ′ = p 1 ( 1 − q ) 2 = 1 p E(X)=\sum_{k=1}^{\infty}kp_k=\sum_{k=1}^{\infty}kq^{k-1}p=p(1+2q+3q^2+\cdots)=p(q+q^2+q^3+\cdots)^{'}=p(\frac{q}{1-q})^{'}=p\frac{1}{(1-q)^2}=\frac{1}{p} E(X)=k=1kpk=k=1kqk1p=p(1+2q+3q2+)=p(q+q2+q3+)=p(1qq)=p(1q)21=p1
几何分布的方差
E ( X 2 ) = ∑ k = 1 + ∞ k 2 p q k − 1 = p [ ∑ k = 1 + ∞ k ( k − 1 ) q k − 1 + ∑ k = 1 + ∞ k q k − 1 ] = p q ∑ k = 1 + ∞ k ( k − 1 ) q k − 2 + 1 p = p q d 2 d q 2 ( ∑ k = 0 + ∞ q k ) + 1 p = p q d 2 d q 2 ( 1 1 − q ) + 1 p = p q 2 ( 1 − p ) 3 + 1 p = 2 q p 2 + 1 p E(X^2)=\sum_{k=1}^{+\infty}k^2pq^{k-1}=p[\sum_{k=1}^{+\infty}k(k-1)q^{k-1}+\sum_{k=1}^{+\infty}kq^{k-1}]=pq\sum_{k=1}^{+\infty}k(k-1)q^{k-2}+\frac{1}{p}=pq\frac{\mathrm{d^2}}{\mathrm{dq^2}}(\sum_{k=0}^{+\infty}q^k)+\frac{1}{p}=pq\frac{\mathrm{d^2}}{\mathrm{dq^2}}(\frac{1}{1-q})+\frac{1}{p}=pq\frac{2}{(1-p)^3}+\frac{1}{p}=\frac{2q}{p^2}+\frac{1}{p} E(X2)=k=1+k2pqk1=p[k=1+k(k1)qk1+k=1+kqk1]=pqk=1+k(k1)qk2+p1=pqdq2d2(k=0+qk)+p1=pqdq2d2(1q1)+p1=pq(1p)32+p1=p22q+p1,
V a r ( X ) = E ( X 2 ) − E ( X ) 2 = 2 q p 2 + 1 p − 1 p 2 = 1 − p p 2 Var(X)=E(X^2)-E(X)^2=\frac{2q}{p^2}+\frac{1}{p}-\frac{1}{p^2}=\frac{1-p}{p^2} Var(X)=E(X2)E(X)2=p22q+p1p21=p21p

常用连续分布期望与方差

均匀分布

均匀分布的期望
其密度函数为:


p ( x ) = { 1 b − a , a < x < b 0 , 其 他 p(x)=\begin{cases} \frac{1}{b-a},a<x<b \\ 0,其他 \end{cases} p(x)={ba1,a<x<b0,

其数学期望为: E ( X ) = ∫ a b x b − a d x = b 2 − a 2 2 ( b − a ) = a + b 2 E(X)=\int_a^b\frac{x}{b-a}\mathrm{dx}=\frac{b^2-a^2}{2(b-a)}=\frac{a+b}{2} E(X)=abbaxdx=2(ba)b2a2=2a+b

均匀分布的方差
E ( X 2 ) = ∫ a b x 2 b − a d x = b 3 − a 3 3 ( b − a ) = a 2 + a b + b 2 3 E(X^2)=\int_a^b\frac{x^2}{b-a}\mathrm{dx}=\frac{b^3-a^3}{3(b-a)}=\frac{a^2+ab+b^2}{3} E(X2)=abbax2dx=3(ba)b3a3=3a2+ab+b2,
V a r ( X ) = E ( X 2 ) − E ( X ) 2 = a 2 + a b + b 2 3 − ( a + b ) 2 4 = ( b − a ) 2 12 Var(X)=E(X^2)-E(X)^2=\frac{a^2+ab+b^2}{3}-\frac{(a+b)^2}{4}=\frac{(b-a)^2}{12} Var(X)=E(X2)E(X)2=3a2+ab+b24(a+b)2=12(ba)2

正态分布

正态分布的期望
其密度函数为: f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2

其数学期望为: E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x = ∫ − ∞ + ∞ x 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = 1 2 π ∫ − ∞ + ∞ ( σ z + μ ) e − z 2 2 d z = μ 2 π ∫ − ∞ + ∞ e − z 2 2 d z = μ E(X)=\int_{-\infty}^{+\infty}xf(x)\mathrm{dx}=\int_{-\infty}^{+\infty}x\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\mathrm{dx}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}(\sigma z+\mu)e^{-\frac{z^2}{2}}\mathrm{dz}=\frac{\mu}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{z^2}{2}}\mathrm{dz}=\mu E(X)=+xf(x)dx=+x2π σ1e2σ2(xμ)2dx=2π 1+(σz+μ)e2z2dz=2π μ+e2z2dz=μ

正态分布的方差
根据方差的定义: V a r ( X ) = ∫ − ∞ + ∞ ( x − μ ) 2 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = σ 2 2 π ∫ − ∞ + ∞ z 2 e − z 2 2 d z = σ 2 2 π [ ( − z e − z 2 2 ) ∣ − ∞ + ∞ + ∫ − ∞ + ∞ e − z 2 2 d z ] = σ 2 2 π 2 π = σ 2 Var(X)=\int_{-\infty}^{+\infty}(x-\mu)^2\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\mathrm{dx}=\frac{\sigma^2}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}z^2e^{-\frac{z^2}{2}}\mathrm{dz}=\frac{\sigma^2}{\sqrt{2\pi}}[(-ze^{-\frac{z^2}{2}})|_{-\infty}^{+\infty}+\int_{-\infty}^{+\infty}e^{-\frac{z^2}{2}}\mathrm{dz}]=\frac{\sigma^2}{\sqrt{2\pi}}\sqrt{2\pi}=\sigma^2 Var(X)=+(xμ)22π σ1e2σ2(xμ)2dx=2π σ2+z2e2z2dz=2π σ2[(ze2z2)+++e2z2dz]=2π σ22π =σ2

指数分布

指数分布的期望
其密度函数为:

f ( x ) = { λ e − λ x , 0 ≤ x < ∞ 0 , 其 他 f(x)= \begin{cases} \lambda e^{-\lambda x},0 \le x< \infty \\ 0,其他 \end{cases} f(x)={λeλx,0x<0,
其数学期望为: E ( X ) = ∫ 0 + ∞ x f ( x ) d x = ∫ 0 + ∞ x λ e − λ x d x = 1 λ ∫ 0 + ∞ u e − u d u = 1 λ E(X)=\int_0^{+\infty}xf(x)\mathrm{dx}=\int_0^{+\infty}x\lambda e^{-\lambda x}\mathrm{dx}=\frac{1}{\lambda}\int_0^{+\infty}ue^{-u}\mathrm{du}=\frac{1}{\lambda} E(X)=0+xf(x)dx=0+xλeλxdx=λ10+ueudu=λ1

指数分布的方差
E ( X 2 ) = ∫ 0 + ∞ x 2 λ e − λ x d x = ∫ 0 + ∞ x 2 d ( − e − λ x ) = − x 2 e − λ x ∣ 0 + ∞ + 2 ∫ 0 + ∞ x e − λ x d x = 2 λ 2 E(X^2)=\int_0^{+\infty}x^2\lambda e^{-\lambda x}\mathrm{dx}=\int_0^{+\infty}x^2\mathrm{d(-e^{-\lambda x})}=-x^2e^{-\lambda x}|_0^{+\infty}+2\int_0^{+\infty}xe^{-\lambda x}\mathrm{dx}=\frac{2}{\lambda^2} E(X2)=0+x2λeλxdx=0+x2d(eλx)=x2eλx0++20+xeλxdx=λ22,

V a r ( X ) = E ( X 2 ) − E ( X ) 2 = 2 λ 2 − 1 λ 2 = 1 λ 2 Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2} Var(X)=E(X2)E(X)2=λ22λ21=λ21


切比雪夫不等式

对于任何具有有限方差的随机变量X,都有

P { ∣ X − E ( X ) ∣ ≥ ϵ } ≤ V a r ( X ) ϵ 2 P\{|X-E(X)|\geq\epsilon\}\leq\frac{Var(X)}{\epsilon^2} P{XE(X)ϵ}ϵ2Var(X)

其中 ϵ \epsilon ϵ是任一正数

证:若F(x)是X的分布函数,则显然有

V a r ( X ) = ∫ − ∞ + ∞ ( x = E ( X ) 2 d F ( x ) ≥ ∫ ∣ x − E ( X ) ∣ ≥ ε ( x − E ( X ) ) 2 d F ( x ) ≥ ∫ ∣ x − E ( X ) ∣ ≥ ε ε 2 d F ( x ) = ε 2 P { ∣ X − E ( x ) ∣ ≥ ε } Var(X)=\int_{-\infty}^{+\infty}(x=E(X)^2{\rm d}F(x) \ge \int_{|x-E(X)| \ge \varepsilon}(x-E(X))^2dF(x) \ge \int_{|x-E(X)| \ge \varepsilon} \varepsilon^2dF(x)= \varepsilon^2P\{|X-E(x)| \ge \varepsilon\} Var(X)=+(x=E(X)2dF(x)xE(X)ε(xE(X))2dF(x)xE(X)εε2dF(x)=ε2P{XE(x)ε}

有时改写成 P { ∣ X − E ( X ) ∣ < ϵ } ≥ 1 − V a r ( X ) ε 2 P\lbrace|X-E(X)|<\epsilon\rbrace \ge 1-\frac{Var(X)}{\varepsilon^2} P{XE(X)<ϵ}1ε2Var(X) P ∣ X − E ( X ) V a r ( X ) ∣ ≥ δ P{|\frac{X-E(X)}{\sqrt{Var(X)}}| \ge \delta} PVar(X) XE(X)δ其中 δ \delta δ是任一正数

分布分布函数期望方差
0—1分布 p k = p k ( 1 − p ) 1 − k , k = 0 , 1. p_k=p^k(1-p)^{1-k},k=0,1. pk=pk(1p)1k,k=0,1. p p p p ( 1 − p ) p(1-p) p(1p)
二项分布
b ( n , p ) b(n,p) b(n,p)
p k = C n k p k ( 1 − p ) n − k , k = 0 , 1 , ⋯   , n p_k=C_n^kp^k(1-p)^{n-k},k=0,1,\cdots,n pk=Cnkpk(1p)nk,k=0,1,,n n p np np n p ( 1 − p ) np(1-p) np(1p)
泊松分布
P ( λ ) P(\lambda) P(λ)
p k = λ k k ! e − λ , k = 0 , 1 , ⋯ p_k=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,\cdots pk=k!λkeλ,k=0,1, λ \lambda λ λ \lambda λ
几何分布
G e ( p ) Ge(p) Ge(p)
p k = ( 1 − p ) k − 1 p , k = 1 , 2 , ⋯ p_k=(1-p)^{k-1}p,k=1,2,\cdots pk=(1p)k1p,k=1,2, 1 p \frac{1}{p} p1 1 − p p 2 \frac{1-p}{p^2} p21p
正态分布
N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)
p ( x ) = 1 2 π σ e x p { − ( x − μ ) 2 2 σ 2 } , − ∞ < x < + ∞ p(x)=\frac{1}{\sqrt{2\pi}\sigma}exp\lbrace -\frac{(x-\mu)^2}{2\sigma^2} \rbrace,-\infty<x<+\infty p(x)=2π σ1exp{2σ2(xμ)2},<x<+ μ \mu μ σ 2 \sigma^2 σ2
均匀分布
U ( a , b ) U(a,b) U(a,b)
p ( x ) = 1 b − a , a < x < b p(x)=\frac{1}{b-a},a<x<b p(x)=ba1,a<x<b a + b 2 \frac{a+b}{2} 2a+b ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2
指数分布
E x p ( λ ) Exp(\lambda) Exp(λ)
p ( x ) = λ e − λ x , x ≥ 0 p(x)=\lambda e^{-\lambda x},x \ge 0 p(x)=λeλx,x0 1 λ \frac{1}{\lambda} λ1 1 λ 2 \frac{1}{\lambda^2} λ21
伽马分布
G a ( α , λ ) Ga(\alpha,\lambda) Ga(α,λ)
p ( x ) = λ α Γ ( α ) x α − 1 e − λ x , x ≥ 0 p(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x},x \ge 0 p(x)=Γ(α)λαxα1eλx,x0 α λ \frac{\alpha}{\lambda} λα α λ 2 \frac{\alpha}{\lambda^2} λ2α
χ 2 ( n ) \chi^2(n) χ2(n)分布 p ( x ) = x n / 2 − 1 e − x / 2 Γ ( n / 2 ) 2 n / 2 p(x)=\frac{x^{n/2-1}e^{-x/2}}{\Gamma(n/2)2^{n/2}} p(x)=Γ(n/2)2n/2xn/21ex/2 n n n 2 n 2n 2n
贝塔分布
B e ( a , b ) Be(a,b) Be(a,b)
p ( x ) = Γ ( a + b ) Γ ( a ) Γ ( b ) x a − 1 ( 1 − x ) b − 1 , 0 < x < 1 p(x)=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1},0<x<1 p(x)=Γ(a)Γ(b)Γ(a+b)xa1(1x)b1,0<x<1 a a + b \frac{a}{a+b} a+ba a b ( a + b ) 2 ( a + b + 1 ) \frac{ab}{(a+b)^2(a+b+1)} (a+b)2(a+b+1)ab

其他特征数

k阶矩
  • X X X为随机变量, k k k为正整数.如果以下的数学期望都存在,则称
    μ k = E ( X k ) \mu_k=E(X^k) μk=E(Xk)
    X X X k k k阶原点矩,称
    γ k = E ( X − E ( X ) ) k \gamma_k=E(X-E(X))^k γk=E(XE(X))k
    X X X k k k阶中心矩.
变异系数
  • 设随机变量 X X X的二阶矩存在,则称比值
    C υ ( X ) = V a r ( X ) E ( X ) = σ ( X ) E ( X ) C_\upsilon(X)=\frac{\sqrt{Var(X)}}{E(X)}=\frac{\sigma(X)}{E(X)} Cυ(X)=E(X)Var(X) =E(X)σ(X)
    X X X的变异系数.
分位数
  • 设连续随机变量 X X X的分布函数为 F ( x ) F(x) F(x),密度函数为 p ( x ) p(x) p(x),对任意 p ∈ ( 0 , 1 ) p \in (0,1) p(0,1),称满足条件
    F ( x p ) = ∫ − ∞ x p p ( x ) d x = p F(x_p)=\int_{-\infty}^{x_p}p(x) \mathrm{dx}=p F(xp)=xpp(x)dx=p
    x p x_p xp为此分布的 p p p分位数,又称下侧 p p p分位数.
    同样,满足条件
    1 − F ( x p ′ ) = ∫ x p ′ + ∞ p ( x ) d x = p 1-F(x_{p}^{'})=\int_{x_p^{'}}^{+\infty}p(x)\mathrm{dx}=p 1F(xp)=xp+p(x)dx=p
中位数
  • 设连续随机变量 X X X的分布函数为 F ( x ) F(x) F(x),密度函数为 p ( x ) p(x) p(x).称 p = 0.5 p=0.5 p=0.5时的 p p p分位数 x 0.5 x_{0.5} x0.5为此分布的中位数,即 x 0.5 x_{0.5} x0.5满足
    F ( x 0.5 ) = ∫ − ∞ x 0.5 p ( x ) d x = 0.5 F(x_{0.5})=\int_{-\infty}^{x_{0.5}}p(x)\mathrm{dx}=0.5 F(x0.5)=x0.5p(x)dx=0.5
偏度系数
  • 设随机变量 X X X的三阶矩存在,则称比值
    β 1 = E ( X − E ( X ) ) 3 [ E ( X − E ( X ) ) 2 ] 3 / 2 = υ 3 ( υ 2 ) 3 / 2 \beta_1=\frac{E(X-E(X))^3}{[E(X-E(X))^2]^{3/2}}=\frac{\upsilon_3}{(\upsilon_2)^{3/2}} β1=[E(XE(X))2]3/2E(XE(X))3=(υ2)3/2υ3
    X X X的分布的偏度系数,简称偏度
峰度系数
  • 设随机变量 X X X的四阶矩存在,则称比值
    β 2 = E ( X − E ( X ) ) 4 [ E ( X − E ( X ) ) 2 ] 2 − 3 = υ 4 ( υ 2 ) 2 − 3 \beta_2=\frac{E(X-E(X))^4}{[E(X-E(X))^2]^2}-3=\frac{\upsilon_4}{(\upsilon_2)^2}-3 β2=[E(XE(X))2]2E(XE(X))43=(υ2)2υ43
    X X X的分布的峰度系数,简称峰度.
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盛者无名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值