【题解】CF442B Andrey and Problem 以及 [USACO19FEB]Cow Dating P

先来看第二题。

[USACO19FEB]Cow Dating P

这是一个关于概率的问题,即求一个最优区间满足恰好有一个成立的概率最大。

我们考虑从 n 到 n+1 有什么变化(这是解决这类问题的基本思路)

∏ i = 1 n ( 1 − p i ) = x \prod_{i=1}^n (1-p_i) = x i=1n(1pi)=x

记前 n n n 项只有一个人答对的概率为 f n f_n fn

现在我们可以开始推式子。

  1. 如果第 n + 1 n+1 n+1 道题答对了, p n + 1 ∗ x p_{n+1} * x pn+1x
  2. 如果第 n + 1 n+1 n+1 道题没有答对, ( 1 − p n + 1 ) ∗ f n (1-p_{n+1})*f_n (1pn+1)fn

所以 f n + 1 = p n + 1 ∗ x + ( 1 − p n + 1 ) ∗ f n f_{n+1}=p_{n+1} * x+(1-p_{n+1})*f_n fn+1=pn+1x+(1pn+1)fn

f n + 1 − f n > 0 f_{n+1} - f_{n} > 0 fn+1fn>0 (单纯为了方便变形或者说成研究增减性)

( x − f n ) ∗ p n + 1 > 0 (x-f_n) * p_{n+1} > 0 (xfn)pn+1>0 ,等价于 x > f n x>f_n x>fn

到这里 f n f_n fn 还是变量,我们考虑消去。

考虑 f n f_n fn 的定义,从而得到:

∏ i = 1 n ( 1 − p i ) > ∏ i = 1 n ( 1 − p i ) ∗ ∑ i = 1 n p i 1 − p i \prod_{i=1}^n (1-p_i) > \prod_{i=1}^n (1-p_i)*\sum_{i=1}^n \frac{p_i}{1-p_i} i=1n(1pi)>i=1n(1pi)i=1n1pipi

∑ i = 1 n p i 1 − p i < 1 \sum_{i=1}^n\frac{p_i}{1-p_i}<1 i=1n1pipi<1

至此,我们固定右端点,然后二分左端点即可。

注意开 long double 。

#include<bits/stdc++.h>
#define db long double
#define fi first
#define se second
#define ll long long
#define inf 1e9
#define eps 1e-10
using namespace std;
const int N=1e6+5;
inline int read() {
    int x=0,f=1; char c=getchar();
    while(c<'0'||c>'9') {
        c=getchar();
    }
    while(c>='0'&&c<='9') {
        x=(x<<1)+(x<<3)+c-'0';
        c=getchar();
    }
    return x;
}
int n; 
db p[N],sum[N],mul[N],res;
int main() {
	scanf("%d",&n);
	for(int i=1;i<=n;i++) {
		scanf("%llf",&p[i]);
		p[i]/=1000000;
	}
	mul[0]=1;
	for(int i=1;i<=n;i++) {
		sum[i]=sum[i-1]+p[i]/(1-p[i]);
		mul[i]=mul[i-1]*(1-p[i]);
	}
	for(int i=1;i<=n;i++) {
		int it=upper_bound(sum+1,sum+i+1,sum[i]-1)-sum-1;
		res=max(res,(sum[i]-sum[it])*mul[i]/mul[it]);
	}
	printf("%lld",(ll)((res+eps)*1000000));
} 

利用上一题的结论,来看第一题。

CF442B Andrey and Problem

本题和上一题的区别在于并没有钦定区间。

也就是说限制少了,难度高了。

但是我们仍然可以通过分析得出结论。

假设最优答案是一个大小为 k 的某个状态。我们不难得出对于任何子集为 k-1 的满足 ∑ i = 1 k − 1 p [ a [ i ] ] 1 − p [ a [ i ] ] < 1 \sum_{i=1}^{k-1}\frac{p[a[i]]}{1-p[a[i]]}<1 i=1k11p[a[i]]p[a[i]]<1

现在考虑把其中一个数调整到更大的 p [ i ] p[i] p[i]

根据 f n + 1 = ( x − f n ) ∗ p n + 1 + f n f_{n+1}=(x-f_n) * p_{n+1}+f_n fn+1=(xfn)pn+1+fn

又因为 x − f n > 0 x-f_n>0 xfn>0 所以 p n + 1 p_{n+1} pn+1 越大答案越优。

此时将最小的 p i p_i pi 替换成较大值,可以得到更优策略,与假设前提矛盾。这样我们就证明了它。

#include<bits/stdc++.h>
#define db double
using namespace std;
const int Maxn=1e5+5;
int n,m;
db p[Maxn],q[Maxn],mx;
bool cmp(db x,db y) {
	return x>y;
}
int main() {
	scanf("%d",&n);
	for(int i=1;i<=n;i++) {
		scanf("%lf",&p[i]);
		if(p[i]==1) {
			printf("1");
			return 0;
		}
	}
	sort(p+1,p+1+n,cmp);
	db tmp=1,tmp2=0;
	for(int i=1;i<=n;i++) {
		q[i]=p[i]/(1-p[i]);
		tmp*=(1-p[i]);
		tmp2+=q[i];
		mx=max(mx,tmp*tmp2);
	}
	printf("%.30lf",mx);
}

总结:(解决这类问题的关键)

  1. 推式子的能力
  2. 问题的转化能力,学会换角度思考
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值