【题解】Matrix

题目描述

在这里插入图片描述
sol :
考点:容斥原理。

考虑枚举最终状态中恰好有 x 行全为黑, y 列全为黑。

即求 ∑ x = A n ∑ y = B m ( n x ) ( m y ) f ( n − x , m − y ) \sum_{x=A}^n\sum_{y=B}^m\binom{n}{x}\binom{m}{y}f(n-x,m-y) x=Any=Bm(xn)(ym)f(nx,my)

定义 f(a,b) 为每行每列都至少有一个白的方案数。

这里规定 f(0,0)=1 ,但是当其中一维为 0 时答案为 0 。

考虑 f(a,b) 怎么算。

我们可以考虑容斥:假设某一状态恰好有 x 行 和 y 列 为黑,那么对答案贡献为 0。

根据组合恒等式 ∑ i = 0 x ∑ j = 0 y ( − 1 ) i + j ( x i ) ( y j ) = 0 \sum_{i=0}^x\sum_{j=0}^y(-1)^{i+j}\binom{x}{i}\binom{y}{j}=0 i=0xj=0y(1)i+j(ix)(jy)=0 ,其中 x,y > 0 。

不难得到: f ( a , b ) = ∑ x = 0 a ∑ y = 0 b ( a x ) ( b y ) ( − 1 ) x + y 2 ( a − x ) ( b − y ) f(a,b)=\sum_{x=0}^a\sum_{y=0}^b\binom{a}{x}\binom{b}{y}(-1)^{x+y}2^{(a-x)(b-y)} f(a,b)=x=0ay=0b(xa)(yb)(1)x+y2(ax)(by)

这里要看到 x=a 或 y=b 的情况。仔细思考后发现就是一维现象的特例,所以贡献也是 0 。

(这里的容斥值得仔细品味)

那么最后就只剩下横纵都有白的情况,也就是 f(a,b) 。

然后把 后面那个 2 的次幂提出来,前面的组合数预处理,可以通过本题。

#include<bits/stdc++.h>
#define int long long
#define ll long long
using namespace std;
const int mod=998244353;
const int Maxn=3005;
ll fpow(ll x,ll y) {
	ll mul(1);
	for(;y;y>>=1) {
		if(y&1) mul=mul*x%mod;
		x=x*x%mod; 
	}
	return mul;
} 
//think.
int n,m,A,B;
ll fac[Maxn],inv[Maxn],ksm[Maxn*Maxn],ans1[Maxn],ans2[Maxn];
ll F(int x) {
	if(x&1) {
		return mod-1;
	}
	else {
		return 1;
	}
}
void init(int N) {
	fac[0]=1;
	for(int i=1;i<=N;i++) {
		fac[i]=fac[i-1]*i%mod;
	}
	inv[N]=fpow(fac[N],mod-2);
	for(int i=N;i>=1;i--) {
		inv[i-1]=inv[i]*i%mod;
	}
}
ll C(int x,int y) {
	return fac[x]*inv[y]%mod*inv[x-y]%mod;
}
//eat shit
//shit you ! 
ll chk(int x,int y) {
	if(!x||!y) return ksm[x+y];
	return ksm[x*y];
}
ll solve(int x,int y) {
	ll res=0;
	for(int i=0;i<=x;i++) {
		for(int j=0;j<=y;j++) {
			res=(res+F(i+j)*C(x,i)%mod*C(y,j)%mod*ksm[(x-i)*(y-j)]%mod)%mod;
		}
	}
	return res;
}
signed main() {
//	freopen("data.in", "r", stdin);
	init(3000);
	while(scanf("%lld%lld%lld%lld",&n,&m,&A,&B)!=EOF) {
		memset(ans1,0,sizeof ans1);
		memset(ans2,0,sizeof ans2);
		for(int i=0;i<=n;i++) {
			for(int j=i;j<=n-A;j++) {
				if(j&1) ans1[i]=(ans1[i]-C(n,j)%mod*C(j,i)%mod+mod)%mod;
				else ans1[i]=(ans1[i]+C(n,j)%mod*C(j,i)%mod)%mod;
			}
		}
		for(int i=0;i<=m;i++) {
			for(int j=i;j<=m-B;j++) {
				if (j&1) ans2[i]=(ans2[i]-C(m,j)%mod*C(j,i)%mod+mod)%mod;
				else ans2[i]=(ans2[i]+C(m,j)%mod*C(j,i)%mod)%mod;
			}
		}
		ll res=0;
		for(int i=0;i<=n;i++) {
			int dj=fpow(2,i);
			for(int j=0,d=1;j<=m;j++,d=d*dj%mod) {
				if ((i+j)&1) res=(res-d*ans1[i]%mod*ans2[j]%mod+mod)%mod;
				else res=(res+d*ans1[i]%mod*ans2[j]%mod)%mod;
			}
		}
//		for(int i=A;i<=n;i++) {
//			for(int j=B;j<=m;j++) {
//				res=(res+C(n,i)*C(m,j)*solve(n-i,m-j)%mod)%mod;
//			}
//		}
		printf("%lld\n",res);
	}
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
06-01
这道题是一道典型的费用限制最短路题目,可以使用 Dijkstra 算法或者 SPFA 算法来解决。 具体思路如下: 1. 首先,我们需要读入输入数据。输入数据中包含了道路的数量、起点和终点,以及每条道路的起点、终点、长度和限制费用。 2. 接着,我们需要使用邻接表或邻接矩阵来存储图的信息。对于每条道路,我们可以将其起点和终点作为一个有向边的起点和终点,长度作为边权,限制费用作为边权的上界。 3. 然后,我们可以使用 Dijkstra 算法或 SPFA 算法求解从起点到终点的最短路径。在这个过程中,我们需要记录到每个点的最小费用和最小长度,以及更新每条边的最小费用和最小长度。 4. 最后,我们输出从起点到终点的最短路径长度即可。 需要注意的是,在使用 Dijkstra 算法或 SPFA 算法时,需要对每个点的最小费用和最小长度进行松弛操作。具体来说,当我们从一个点 u 经过一条边 (u,v) 到达另一个点 v 时,如果新的费用和长度比原来的小,则需要更新到达 v 的最小费用和最小长度,并将 v 加入到优先队列(Dijkstra 算法)或队列(SPFA 算法)中。 此外,还需要注意处理边权为 0 或负数的情况,以及处理无法到达终点的情况。 代码实现可以参考以下样例代码: ```c++ #include <cstdio> #include <cstring> #include <queue> #include <vector> using namespace std; const int MAXN = 1005, MAXM = 20005, INF = 0x3f3f3f3f; int n, m, s, t, cnt; int head[MAXN], dis[MAXN], vis[MAXN]; struct Edge { int v, w, c, nxt; } e[MAXM]; void addEdge(int u, int v, int w, int c) { e[++cnt].v = v, e[cnt].w = w, e[cnt].c = c, e[cnt].nxt = head[u], head[u] = cnt; } void dijkstra() { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); dis[s] = 0; q.push(make_pair(0, s)); while (!q.empty()) { int u = q.top().second; q.pop(); if (vis[u]) continue; vis[u] = 1; for (int i = head[u]; i != -1; i = e[i].nxt) { int v = e[i].v, w = e[i].w, c = e[i].c; if (dis[u] + w < dis[v] && c >= dis[u] + w) { dis[v] = dis[u] + w; q.push(make_pair(dis[v], v)); } } } } int main() { memset(head, -1, sizeof(head)); scanf("%d %d %d %d", &n, &m, &s, &t); for (int i = 1; i <= m; i++) { int u, v, w, c; scanf("%d %d %d %d", &u, &v, &w, &c); addEdge(u, v, w, c); addEdge(v, u, w, c); } dijkstra(); if (dis[t] == INF) printf("-1\n"); else printf("%d\n", dis[t]); return 0; } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值