【学习笔记】构造

没长脑子

构造题大都很新,所以解决它们并不是一件容易的事 。

Nastia and a Beautiful Matrix

出师不利

要使能填的数目最大,大概长这样 。
在这里插入图片描述

发现奇数行可以随便填,于是直接莽,然后 wa 了 。

首先判断出众数不能超过 n × ⌈ n 2 ⌉ n\times \lceil\frac{n}{2}\rceil n×2n 次。

然后观察斜对角线的情况 。

把给的数拍扁成序列 。 出现次数多的先填,众数放在最前面 。

  1. 填行为奇,列为偶的格子
  2. 填行为奇,列为奇的格子
  3. 填行为偶,列为奇的格子

这样填一定合法 。

Off by One

不会。

想到第一步转化了应该就不难 。

如果我们把能消除的点两两连边,这样是求无向图最大边独立集,而且边数是 O(n^2) ,寄 。

如果我们 点转边 ,问题背景就很熟悉了 。

直接跑生成树即可 。

One-Four Overload

构造题(x)
猜结论(v)

把无解判掉后,很容易猜到这题一定有解。

对于四个位置的情况,限制为相邻两点数字不同 。

然后就可以愉快地二分图染色了 。

可以证明没有奇环 。

证明并不困难 。 考虑欧拉回路 。

Johnny Solving

对于无向连通图。

自然而然想到跑 DFS 树。

如果叶节点深度 >=n/k ,那么输出路径。

否则至少有 k 个叶子结点 。考虑对每个叶子结点构造一个环 。

结合入度 >=3 可以做到 。

这题和 Pairs of Pairs 考的都是一个东西 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值