ARC113
String Invasion
sb模拟题
Sky Reflector
我会观察性质!!
显然 max { a i } ≤ min { b j } \max\{a_i\}\le \min\{b_j\} max{ai}≤min{bj} 。否则存在位置不合法。
然后发现这是充要的。我只要把 { a i } \{a_i\} {ai}和 { b i } \{b_i\} {bi}填进去,剩下的乱填不会造成影响。
答案是 ∑ i = 1 K ( i n − ( i − 1 ) n ) ( K − i + 1 ) m \sum_{i=1}^K(i^n-(i-1)^n)(K-i+1)^m ∑i=1K(in−(i−1)n)(K−i+1)m
Rvom and Rsrev
nb贪心题
大分类讨论+模拟+细节一堆。
ARC112
Cigar Box
我们称对元素的最后一次操作是必要的。
假设将 L L L个元素移到开头, R R R个元素移到结尾。
那么中间那一段还是原序列。
考虑从后往前构造操作序列。当前操作有可能成为必要的,即某一元素的最后一次操作,也有可能被后续操作覆盖。复杂度
O
(
n
2
m
)
O(n^2m)
O(n2m) tle飞了
显然我们对于必要的操作并不关心真正移到开头还是结尾,因此可以把后两维合并,再乘上方案数 ( L + R L ) \binom{L+R}{L} (LL+R) 。复杂度 O ( n m ) O(nm) O(nm)
思维啊
ARC111
Orientation
简单构造题。
对于 c u ≠ c v c_u\ne c_v cu=cv从大的指向小的
对于 c u = c v c_u=c_v cu=cv需要定向使得 c u c_u cu的导出子图强连通。
显然构建 D F S DFS DFS树,对于树边从上面指向下面,对于非树边从下面指向上面。
证明考虑给定的图不存在桥,并且从任何点能走到根。
Do you like query problems?
利用期望线性性质算贡献的神仙题(
考虑算 E ( t , i ) E(t,i) E(t,i)表示第 t t t轮后 a i a_i ai的期望, P ( t , i , v ) P(t,i,v) P(t,i,v)表示第 t t t轮后 a i ≥ v a_i\ge v ai≥v的概率
那么 E ( t , i ) = ∑ v = 1 m − 1 P ( t , i , v ) E(t,i)=\sum_{v=1}^{m-1}P(t,i,v) E(t,i)=∑v=1m−1P(t,i,v)[1]
我们称操作是必要的当且仅当:
1.1
1.1
1.1操作的区间包含
i
i
i
1.2
1.2
1.2操作取
max
\max
max且
≥
v
\ge v
≥v,或操作取
min
\min
min且
<
v
<v
<v
操作必要的概率是 p i = i ( n − i + 1 ) ( n + 1 2 ) M 2 M + 1 p_i=\frac{i(n-i+1)}{\binom{n+1}{2}}\frac{M}{2M+1} pi=(2n+1)i(n−i+1)2M+1M 。[2]那么至少有一次操作必要并且最后一次操作为取 max \max max的概率 P ( t , i , v ) = [ 1 − ( 1 − p i ) t ] M − v M P(t,i,v)=[1-(1-p_i)^t]\frac{M-v}{M} P(t,i,v)=[1−(1−pi)t]MM−v
那么考虑每一轮 a i a_i ai对答案的贡献
询问包含 a i a_i ai的概率 q i = i ( n − i + 1 ) ( n + 1 2 ) 1 2 M + 1 q_i=\frac{i(n-i+1)}{\binom{n+1}{2}}\frac{1}{2M+1} qi=(2n+1)i(n−i+1)2M+11
答案是 ∑ t = 0 Q − 1 ∑ i = 1 n E ( t , i ) q i \sum_{t=0}^{Q-1}\sum_{i=1}^nE(t,i)q_i ∑t=0Q−1∑i=1nE(t,i)qi
按 i i i的每一项计算即可。复杂度 O ( n log n ) O(n\log n) O(nlogn) 。
[1]利用了期望优秀的拆分性质
[2]这个式子和
v
v
v取值无关