【数位DP】BZOJ3780数字统计

版权声明:转载请写明出处,谢谢O(∩_∩)O https://blog.csdn.net/cqbztsy/article/details/50748765

Time Limit: 10 Sec Memory Limit: 128 MB
Description
小A正在研究一些数字统计问题。有一天他突然看到了一个这样的问题:
[L..R]中的所有整数用M位二进制数表示(允许出现前导0)。现在将这些数中的每一个作如下变换:
从这个数的最低两位开始,如果这两位都是0,那么X=1,否则X=0。现在将这两位删去,然后将X放在原来最低位的位置上。重复这个变换直到这个数只剩下一位为止。
例如01001的变换过程如下:
01001>0100>011>00>1
现在的问题是变换后的所有数中,值为YY01)的有多少个?
小A不会了,他想让你帮助他完成这个问题。
Input
输入文件包含多组测试数据。
第一行,一个整数T,表示测试数据的组数。
接下来的T节,每节对应一组测试数据,格式如下:
第一行,两个整数MY
第二行,两个M位二进制数LR
Output
对于每组测试数据,输出一行,一个二进制数,表示该组测试数据中[L..R]中的所有整数变换后的值为Y的个数。这里的二进制数不允许出现前导0
Sample Input
1
3 1
001 101
Sample Output
11
HINT
对于全部的数据,1<=M<=2001<=T<=50

一个很明显的数位DP…
由于运算规则的限定,只能从低位向高位递推了。
少见的从低位推向高位的数位DP…

f[i][j][k]表示低位数起的第i位 按规则计算后答案为jj01k表示与n的大小关系(当大于等于n时,k=0;否则k=1

那么递推式为
t=num[i+1],f[i+1][!j&&!t][k]+=f[i][j][k]
否则,f[i+1][!j&&!t][!(t>=num[i+1])]+=f[i][j][k]

由于LR的范围很大,需要用高精度。同时最后结果要求以二进制的形式输出,那么对高精度进行压位时,模数应该是一个2k,为了方便用位运算来取模,可以&2k1

结果本弱很快写完后调了一个多小时,发现高精度不知道哪里写错了,反正位数不多,又只有加减运算,就直接遍历一遍吧…

#include <iostream>
#include <cstdio>
#include <cstring>
#define MAXN 202
using namespace std;
const int P=(1<<30)-1;

int len, y;
char l[MAXN], r[MAXN];
struct Bignum
{
    int num[8];
    Bignum(){memset(num,0,sizeof num);}
    void operator += (const Bignum &a)
    {
        for(int i=0;i<7;++i)
        {
            num[i]+=a.num[i];
            if(num[i]>P)++num[i+1], num[i]&=P;
        }
    }
    Bignum operator + (const Bignum &a)const
    {
        Bignum t=*this;
        t+=a;
        return t;
    }
    void operator -= (const Bignum &a)
    {
        for(int i=0;i<7;++i)
        {
            num[i]-=a.num[i];
            if(num[i]<0)--num[i+1], num[i]+=P+1;
        }
    }
    Bignum operator - (const Bignum &a)const
    {
        Bignum t=*this;
        t-=a;
        return t;
    }
    void put()
    {
        int i;
        for(i=201;~i;--i)if(num[i/30]&(1<<i%30))break;
        if(i<0)putchar('0');
        else for(;~i;--i)putchar(num[i/30]&(1<<i%30)?'1':'0');
        puts("");
    }
}ans, f[MAXN][2][2], one;

bool check(char num[])
{
    int k=num[1];
    for(int i=2;i<=len;++i)k=!k&&!num[i];
    return k==y;
}

Bignum cal(char num[])
{
    for(int i=1;i<=len;++i)f[i][0][0]=f[i][0][1]=f[i][1][0]=f[i][1][1]=Bignum();
    for(int i=0;i<2;++i)f[1][i][i<num[1]]+=one;
    for(int i=1;i<len;++i)
        for(int j=0;j<2;++j)
            for(int k=0;k<2;++k)
                for(int t=0;t<2;++t)
                    f[i+1][!j&&!t][t==num[i+1]?k:t<num[i+1]]+=f[i][j][k];
    return f[len][y][1];
}

int main()
{
    int cas;
    one.num[0]=1;
    scanf("%d",&cas);
    while(cas--)
    {
        scanf("%d%d",&len,&y);
        scanf("%s%s",l+1,r+1);
        for(int i=1;i+i<=len;++i)swap(l[i],l[len-i+1]), swap(r[i],r[len-i+1]);
        for(int i=1;i<=len;++i)l[i]-='0', r[i]-='0';
        ans=cal(r)-cal(l);
        if(check(r))ans+=one;
        //这里的cal(n)函数计算[1,n)满足条件的个数,所以说最后还有特判一下r是否满足条件
        ans.put();
    }
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页