BZOJ1266 上学路线route(最小割)

显然,要删掉的路径肯定在最短路径上面。所以在最短路上建网络流的图,此时边的容量变成了ci。我们要花最小的代价让1,n不连通,也就是求最大流。

#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#define MAXN 510
using namespace std;
inline int Min(int a,int b)
{return a<b?a:b;}
inline void Swap(int &a,int &b)
{int c = a; a = b,b = c;}
struct E
{
    int v,w,op;
    E(){}
    E(int a,int b,int c)
    {v = a; w= b; op = c;}
};
vector<E> g[MAXN];
void add(int u,int v,int w)
{
    g[u].push_back(E(v,w,g[v].size()));
    g[v].push_back(E(u,0,g[u].size()-1));
}
int d[MAXN],vd[MAXN],s,t,n,m,flow;
int d1[MAXN],d2[MAXN];
struct Edge
{
    int u,v,w,c;
}e[300010];
struct Node
{
    int v,w,next;
}edge[300010];
int head[MAXN],cnt;
void Add_edge(int u,int v,int w)
{
    edge[cnt].v = v;
    edge[cnt].w = w;
    edge[cnt].next = head[u];
    head[u] = cnt++;
}
bool inque[MAXN];
void SPFA(int s,int *dis)
{
    queue<int> Q;
    for(int i = 1; i <= n; i++)
        dis[i] = 0x7f3f3f3f,inque[i] = 0;
    dis[s] = 0,inque[s] = 1,Q.push(s);
    while(!Q.empty())
    {
        int u = Q.front();
        Q.pop(),inque[u] = 0;
        for(int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].v;
            if(dis[u]+edge[i].w < dis[v])
            {
                dis[v] = dis[u]+edge[i].w;
                if(!inque[v]) Q.push(v),inque[v] = 1;
            }
        }
    }
}
int aug(int i,int augco)
{
    int j,augc = augco,delta,mind = n-1,sz = g[i].size();
    if(i == n) return augco;
         
    for(j = 0; j < sz; j++)
    {
        int v = g[i][j].v;
        if(g[i][j].w)
        {
            if(d[i] == d[v]+1)
            {
                delta = Min(augc,g[i][j].w);
                delta = aug(v,delta);
                g[i][j].w -= delta;
                g[v][g[i][j].op].w += delta;
                augc -= delta;
                if(d[1] >= n) return augco - augc;
                if(!augc) break;
            }
            if(d[v] < mind) mind = d[v];
        }
    }
    if(augc == augco)
    {
        vd[d[i]]--;
        if(!vd[d[i]]) d[1] = n;
        d[i] = mind+1;
        vd[d[i]]++;
    }
    return augco - augc;
}
void sap()
{
    vd[0] = n;
    while(d[1] < n)
        flow += aug(1,0x7f3f3f3f);
}
int main()
{
    memset(head,-1,sizeof head);
    scanf("%d%d",&n,&m);
    for(int i = 1; i <= m; i++)
    {   
        scanf("%d%d%d%d",&e[i].u,&e[i].v,&e[i].w,&e[i].c);
        Add_edge(e[i].u,e[i].v,e[i].w);
        Add_edge(e[i].v,e[i].u,e[i].w);
    }
    SPFA(1,d1);
    SPFA(n,d2);
    for(int i = 1; i <= m; i++)
    {
        int u = e[i].u,v = e[i].v;
        if(d1[u] > d1[v]) Swap(u,v);
        if(d1[u] + e[i].w + d2[v] == d1[n]) 
            add(u,v,e[i].c);
    }
    sap();
    printf("%d\n%d\n",d1[n],flow);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值