PyTorch实现多层感知机(MLP)

本文介绍了如何使用PyTorch实现一个多层感知机(MLP)模型,包括模型构建、超参数设置、数据预处理、训练和评估过程。通过实例展示了MLP在解决分类问题上的应用。
摘要由CSDN通过智能技术生成

多层感知机(Multilayer Perceptron,MLP)是一种常用的前向人工神经网络模型,用于解决分类和回归问题。本文将使用PyTorch库来实现一个简单的MLP模型,并展示如何训练和评估模型。

首先,我们需要导入所需的库:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader

接下来,我们定义一个MLP类来构建模型。MLP由输入层、隐藏层和输出层组成。每个层都由全连接层&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值