android 系统中可以在prop中配置dalvik堆的有关设定。具体设定由如下三个属性来控制
-dalvik.vm.heapstartsize
堆分配的初始大小,调整这个值会影响到应用的流畅性和整体ram消耗。这个值越小,系统ram消耗越慢,
但是由于初始值较小,一些较大的应用需要扩张这个堆,从而引发gc和堆调整的策略,会应用反应更慢。
相反,这个值越大系统ram消耗越快,但是程序更流畅。
-dalvik.vm.heapgrowthlimit
受控情况下的极限堆(仅仅针对dalvik堆,不包括native堆)大小,dvm heap是可增长的,但是正常情况下
dvm heap的大小是不会超过dalvik.vm.heapgrowthlimit的值(非正常情况下面会详细说明)。这个值控制那
些受控应用的极限堆大小,如果受控的应用dvm heap size超过该值,则将引发oom(out of memory)。
-dalvik.vm.heapsize
不受控情况下的极限堆大小,这个就是堆的最大值。不管它是不是受控的。这个值会影响非受控应用的dalvik
heap size。一旦dalvik heap size超过这个值,直接引发oom。
用他们三者之间的关系做一个简单的比喻:分配dalvik heap就好像去食堂打饭,有人饭量大,要吃三碗,有人饭量小,连一碗都吃不完。如果食堂按照三碗的标准来给每个人打饭,那绝对是铺张浪费,所以食堂的策略就是先打一碗,凑合吃,不够了自己再来加,设定堆大小也是一样,先给一个合理值,凑合用,自己不够了再跟系统要。食堂毕竟是做买卖的,如果很多人明显吃不了那么多,硬是一碗接着一碗。为了制止这种不合理的现象,食堂又定了一个策略,一般人就只能吃三碗。但是如果虎背熊腰的大汉确实有需要,可以吃上五碗,超过五碗就不给了(太亏本了)。
开始给一碗 对应 dalvik.vm.heapstartsize
一般人最多吃三碗 对应 dalvik.vm.heapgrowthlimit
虎背熊腰的大汉最多能吃五碗 对应 dalvik.vm.heapsize
在android开发中,如果要使用大堆。需要在manifest中指定android:largeHeap为true。这样dvm heap最大可达dalvik.vm.heapsize。其中分配过程,可以在heap.cpp里粗略看出一些原理:
/* Try as hard as possible to allocate some memory.
*/
static void *tryMalloc(size_t size)
{
void *ptr;
/* Don't try too hard if there's no way the allocation is
* going to succeed. We have to collect SoftReferences before
* throwing an OOME, though.
*/
if (size >= gDvm.heapGrowthLimit) {
LOGW("%zd byte allocation exceeds the %zd byte maximum heap size",
size, gDvm.heapGrowthLimit);
ptr = NULL;
goto collect_soft_refs;
}
//TODO: figure out better heuristics
// There will be a lot of churn if someone allocates a bunch of
// big objects in a row, and we hit the frag case each time.
// A full GC for each.
// Maybe we grow the heap in bigger leaps
// Maybe we skip the GC if the size is large and we did one recently
// (number of allocations ago) (watch for thread effects)
// DeflateTest allocs a bunch of ~128k buffers w/in 0-5 allocs of each other
// (or, at least, there are only 0-5 objects swept each time)
ptr = dvmHeapSourceAlloc(size);
if (ptr != NULL) {
return ptr;
}
/*
* The allocation failed. If the GC is running, block until it
* completes and retry.
*/
if (gDvm.gcHeap->gcRunning) {
/*
* The GC is concurrently tracing the heap. Release the heap
* lock, wait for the GC to complete, and retrying allocating.
*/
dvmWaitForConcurrentGcToComplete();
ptr = dvmHeapSourceAlloc(size);
if (ptr != NULL) {
return ptr;
}
}
/*
* Another failure. Our thread was starved or there may be too
* many live objects. Try a foreground GC. This will have no
* effect if the concurrent GC is already running.
*/
gcForMalloc(false);
ptr = dvmHeapSourceAlloc(size);
if (ptr != NULL) {
return ptr;
}
/* Even that didn't work; this is an exceptional state.
* Try harder, growing the heap if necessary.
*/
ptr = dvmHeapSourceAllocAndGrow(size);
if (ptr != NULL) {
size_t newHeapSize;
newHeapSize = dvmHeapSourceGetIdealFootprint();
//TODO: may want to grow a little bit more so that the amount of free
// space is equal to the old free space + the utilization slop for
// the new allocation.
LOGI_HEAP("Grow heap (frag case) to "
"%zu.%03zuMB for %zu-byte allocation",
FRACTIONAL_MB(newHeapSize), size);
return ptr;
}
/* Most allocations should have succeeded by now, so the heap
* is really full, really fragmented, or the requested size is
* really big. Do another GC, collecting SoftReferences this
* time. The VM spec requires that all SoftReferences have
* been collected and cleared before throwing an OOME.
*/
//TODO: wait for the finalizers from the previous GC to finish
collect_soft_refs:
LOGI_HEAP("Forcing collection of SoftReferences for %zu-byte allocation",
size);
gcForMalloc(true);
ptr = dvmHeapSourceAllocAndGrow(size);
if (ptr != NULL) {
return ptr;
}
//TODO: maybe wait for finalizers and try one last time
LOGE_HEAP("Out of memory on a %zd-byte allocation.", size);
//TODO: tell the HeapSource to dump its state
dvmDumpThread(dvmThreadSelf(), false);
return NULL;
}
这里分为如下几个动作
1 首先判断一下需要申请的size是不是过大,如果申请的size超过了堆的最大限制,则转入步骤6
2 尝试分配,如果成功则返回,失败则转入步骤3
3 判断是否gc正在进行垃圾回收,如果正在进行则等待回收完成之后,尝试分配。如果成功则返回,失败则转入步骤4
4 自己启动gc进行垃圾回收,这里gcForMalloc的参数是false。所以不会回收软引用,回收完成后尝试分配,如果成功则返回,失败则转入步骤5
5 调用dvmHeapSourceAllocAndGrow尝试分配,这个函数会扩张堆。所以heap startup的时候可以给一个比较小的初始堆,实在不够用再调用它进行扩张
6 进入回收软引用阶段,这里gcForMalloc的参数是ture,所以需要回收软引用。然后调用dvmHeapSourceAllocAndGrow尝试分配,如果失败则抛出OOM
如果设置了largeHeap,具体流程从解析apk开始,源码位于PackagePaser.java中,其中parseApplication函数负责解析apk。其中有一个小段代码如下:
if (sa.getBoolean(
com.android.internal.R.styleable.AndroidManifestApplication_largeHeap,
false)) {
ai.flags |= ApplicationInfo.FLAG_LARGE_HEAP;
}
如果解析到apk中设置了largeHeap,则在applicationinfo中添加FLAG_LARGE_HEAP标签。之后会在ActivityThead.java中的handleBindApplication处理,这个函数非常重要,底层process fork好之后,会由这个函数把上层应用绑定过去。并且调用上层应用的入口点。其中处理largeHeap的代码如下:
if ((data.appInfo.flags&ApplicationInfo.FLAG_LARGE_HEAP) != 0) {
dalvik.system.VMRuntime.getRuntime().clearGrowthLimit();
}
这里经过jni调用,最终回来到heapsource.cpp中的dvmClearGrowthLimit函数中:
/*
* Removes any growth limits. Allows the user to allocate up to the
* maximum heap size.
*/
void dvmClearGrowthLimit()
{
HS_BOILERPLATE();
dvmLockHeap();
dvmWaitForConcurrentGcToComplete();
gHs->growthLimit = gHs->maximumSize;
size_t overhead = oldHeapOverhead(gHs, false);
gHs->heaps[0].maximumSize = gHs->maximumSize - overhead;
gHs->heaps[0].limit = gHs->heaps[0].base + gHs->heaps[0].maximumSize;
dvmUnlockHeap();
}
这里会把HeapSource的growthLimit设置为maximumSize,说简单点就是把growthLimit有原来
dalvik.vm.heapgrowthlimit的值调整为
dalvik.vm.heapsize。不过分配的时候判断oom的依据是根据heap中的maximumSize来决定。这里不得不说一下HeapSource的两个堆了,heaps[]数组中有两个堆。简单来讲,0号堆是可用堆,是开发给上层使用的。1号堆是fork的时候从zygote进程直接复制过来的,这个是死的,不会由dvm开放给上层使用。overhead标明了堆中已经分配可多少(包括0号堆和1号堆)。所以上层能分配打的最大使用量为 gHs->maxmumSize - overhead。
以上只是参照源码的个人理解,如果有什么错误的地方。欢迎指正