本练习利用KMeans算法对标准普尔500指数的股票进行聚类,为进一步投资提供决策参考。该数据集有2个特征,借助散点图明显看出股票可以分为4类。建立模型后,通过肘部法和轮廓系数得到最佳的簇数为4。最后,在散点图上用不同颜色直观展示不同类别的样本,并画出每类的质心。
Python算法练习(五)// 算法:KMeans,数据集:标准普尔500指数
最新推荐文章于 2024-06-11 14:31:19 发布
本练习利用KMeans算法对标准普尔500指数的股票进行聚类,为进一步投资提供决策参考。该数据集有2个特征,借助散点图明显看出股票可以分为4类。建立模型后,通过肘部法和轮廓系数得到最佳的簇数为4。最后,在散点图上用不同颜色直观展示不同类别的样本,并画出每类的质心。