Python算法练习(五)// 算法:KMeans,数据集:标准普尔500指数

本练习利用KMeans算法对标准普尔500指数的股票进行聚类,为进一步投资提供决策参考。该数据集有2个特征,借助散点图明显看出股票可以分为4类。建立模型后,通过肘部法和轮廓系数得到最佳的簇数为4。最后,在散点图上用不同颜色直观展示不同类别的样本,并画出每类的质心。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值