Python算法总结(十)// 优点、缺点和参数

本文详细介绍了Python中常见的机器学习算法,包括逻辑回归、决策树、XGBoost、神经网络MLP和SVM。讨论了各算法的优点、缺点,并列举了关键参数,如逻辑回归的penalty和C参数,决策树的criterion和max_depth参数,XGBoost的max_depth和learning_rate参数,以及SVM的kernel和C参数。这些信息对于理解和调优机器学习模型至关重要。
摘要由CSDN通过智能技术生成

注:本文总结参考《Python机器学习基础教程》及老师课件,感谢作者!

算法一
逻辑回归
算法优点
(1)模型简单、易于理解、计算代价低
算法缺点
(1)容易欠拟合
关键参数
(1)penalty参数,取值“l1”和 “l2”,如果只是为了解决过拟合,采用L2正则化即可;如果进一步希望一些不重要特征的系数归于零,让模型系数稀疏化,则采用L1正则化。
(2)C参数,取值越大,正则化强度越小。
(3)class_weight参数,调和样本不均衡。
(4)multi_class参数,分类方式的选择,在多元分类问题中需要设置。本案例不涉及。
。。。。。。。。。。。。。。。。。。。
算法二
决策树
算法优点
(1)易于理解和解释
(2)能够同时处理数值型和分类型特征
(3)对数据规范性要求低,无需太多的数据预处理步骤
算法缺点
(1)但sklearn中决策树不支持对缺失值的处理
(2)容易过拟合
(3)决策树不稳定
(4)在拟合决策树时要考虑样本不均衡

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值