记录报错:RuntimeError: No CUDA GPUs are available及解决过程。

1、报错:No CUDA GPUs are available

2、参考了以下两位博主的文章,已解决,深深感谢!附上链接云天徽上的文章春风知江南

3-1、检查CUDA是否正确安装

打开cmd(win+R,输入cmd打开),激活环境 ,验证代码。

avtivate 环境名
nvcc --version

可以看出,cuda已经正确安装,并且版本为11.8

3-2、检查cuda和torch版本是否匹配

我的cuda版本是11.8,torch版本是是2.0.0,理论上匹配没问题,谨慎起见,用代码验证一下

结果为True,说明版本匹配没问题。

3-1、查看GPU设备数量

命令返回1,说明是有GPU设备的。

3-1、报错解决

再次运行代码时,报错已经解决了,根据博主春风知江南的说法,cuda使用之前都要检测一下cuda是否可用,没检测就默认没有,至此,解决完此bug。

### Linux服务器上CUDA不可用问题解决方案 对于Linux服务器上报错`RuntimeError: No CUDA GPUs are available`的情况,可以按照以下方法排查并解决问题。 #### 验证PyTorch是否能识别GPU 确认PyTorch能否检测到GPU设备是一个重要的初步检查。可以通过Python脚本执行如下命令来验证: ```python import torch print(torch.cuda.is_available()) print(torch.cuda.device_count()) ``` 如果上述代码返回False和0,则表示当前环境中PyTorch未能成功找到任何可用的GPU资源[^1]。 #### 检查CUDA安装状态 确保CUDA已经在Linux系统中正确安装,并且能够正常工作。通过终端输入nvcc --version指令查询CUDA编译器版本号,以此判断CUDA是否存在以及其具体版本。例如,在一个成功的安装环境下,该命令应当显示类似于下面的信息: ``` nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2023 NVIDIA Corporation Built on Wed_Sep_27_19:36:35_PDT_2023 Cuda compilation tools, release 11.8, V11.8.89 Build cuda_11.8.r11.8/compiler.34283773_0 ``` 这表明CUDA已经被正确部署到了操作系统内[^2]。 #### 核实CUDA与PyTorch版本兼容性 为了使CUDA和PyTorch协同运作良好,两者之间的版本需保持一致或至少相互支持。比如当使用的CUDA版本为11.8时,对应的PyTorch版本应选择与其相匹配的一个稳定版(如2.0.0)。可通过官方文档获取详细的版本对应表,并利用pip工具重新安装适当版本的PyTorch库以确保最佳性能表现。 #### 排除驱动程序冲突 有时即使硬件本身具备NVIDIA GPU,但由于显卡驱动未更新至最新版本或是存在其他软件层面的因素干扰,也可能导致无法正常使用CUDA功能。建议定期访问[NVIDIA官方网站](https://www.nvidia.com/)下载最新的图形驱动包进行升级操作;同时注意清除旧有的残留文件以免造成不必要的麻烦。 经过以上几个方面的仔细核查之后,通常情况下应该能够有效定位并修复关于“无可用CUDA GPU”的错误提示信息了。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值